Advertisement

Communications in Mathematical Physics

, Volume 340, Issue 2, pp 471–497 | Cite as

Analysis of an Incompressible Navier–Stokes–Maxwell–Stefan System

  • Xiuqing Chen
  • Ansgar JüngelEmail author
Article

Abstract

The Maxwell–Stefan equations for the molar fluxes, supplemented by the incompressible Navier–Stokes equations governing the fluid velocity dynamics, are analyzed in bounded domains with no-flux boundary conditions. The system models the dynamics of a multicomponent gaseous mixture under isothermal conditions. The global-in-time existence of bounded weak solutions to the strongly coupled model and their exponential decay to the homogeneous steady state are proved. The mathematical difficulties are due to the singular Maxwell–Stefan diffusion matrix, the cross-diffusion terms, and the different molar masses of the fluid components. The key idea of the proof is the use of a new entropy functional and entropy variables, which allows for a proof of positive lower and upper bounds of the mass densities without the use of a maximum principle.

Keywords

Entropy Weak Solution Stokes Equation Molar Mass Global Existence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amundson N., Morano E., Sanders R.: Techniques for the numerical solution of steady reaction–diffusion systems employing Stefan–Maxwell diffusion. East–West J. Numer. Math. 6, 9–25 (1998)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Amundson N., Pan T.-W., Paulsen V.: Diffusing with Stefan and Maxwell. AIChE J. 49, 813–830 (2003)CrossRefGoogle Scholar
  3. 3.
    Andries P., Aoki K., Perthame B.: A consistent BGK-type model for gas mixtures. J. Stat. Phys. 106, 993–1018 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bothe, D.: On the Maxwell–Stefan equations to multicomponent diffusion. In: Escher, J., Guidotti, P., Hieber, M., Mucha, P., Prüss, J.W., Shibata, Y., Simonett, G., Walker, C., Zajaczkowski, W. (eds.) Progress in Nonlinear Differential Equations and their Applications, pp. 81–93. Springer, Basel (2011)Google Scholar
  5. 5.
    Bothe D., Dreyer W.: Continuum thermodynamics of chemically reacting fluid mixtures. Acta Mech. 226, 1757–1805 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bothe D., Fischer A., Saal J.: Global well-posedness and stability of electro-kinetic flows. SIAM J. Math. Anal. 46, 1263–1316 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Boudin L., Grec B., Salvarani F.: A mathematical and numerical analysis of the Maxwell–Stefan diffusion equations. Discret. Contin. Dyn. Sys. B 5, 1427–1440 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen L., Jüngel A.: Analysis of a multi-dimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36, 301–322 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dreher M., Jüngel A.: Compact families of piecewise constant functions in L p(0, T; B). Nonlinear Anal. 75, 3072–3077 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Giovangigli V.: Convergent iterative methods for multicomponent diffusion. IMPACT Comput. Sci. Eng. 3, 244–276 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Giovangigli V.: Multicomponent Flow Modeling. Birkhäuser, Basel (1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    Giovangigli V.: Plane flames with multicomponent transport and complex chemistry. Math. Models Methods Appl. Sci. 9, 337–378 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Griepentrog J.: On the unique solvability of a nonlocal phase separation problem for multicomponent systems. Banach Center Publ. 66, 153–164 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Herberg, M., Meyries, M., Prüss, J., Wilke, M.: Reaction–diffusion systems of Maxwell–Stefan type with reversible mass-action kinetics (2013). arXiv:1310.4723 (Preprint)
  15. 15.
    Jüngel, A.: Entropy dissipation methods for nonlinear partial differential equations. In: Lecture Notes (2012). http://www.jungel.at.vu. Accessed 01 Sept 2015
  16. 16.
    Jüngel A., Stelzer I.: Existence analysis of Maxwell–Stefan systems for multicomponent mixtures. SIAM J. Math. Anal. 45, 2421–2440 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Manley O., Marion M., Temam R.: Fully nonlinear multispecies reaction–diffusion equations. Appl. Math. Lett. 8, 7–11 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Marion M., Temam R.: Global existence for fully nonlinear reaction–diffusion systems describing multicomponent reactive flows. J. Math. Pures Appl. 104(1), 102–138 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mucha P., Pokorný M., Zatorska E.: Approximate solutions to a model of two-component reactive flow. Discret. Contin. Dyn. Syst. Ser. 7, 1079–1099 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Mucha, P., Pokorný, M., Zatorska, E.: Chemically reacting mixtures in terms of degenerated parabolic setting. J. Math. Phys. 54, 071501 (2013). (17 pages)Google Scholar
  21. 21.
    Temam R.: Navier–Stokes Equations. In: Theory and Numerical Analysis, 3rd edn. North-Holland, Amsterdam (1984)Google Scholar
  22. 22.
    Unterreiter A., Arnold A., Markowich P., Toscani G.: On generalized Csiszár–Kullback inequalities. Monatshefte Math. 131, 235–253 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Wesselingh J., Krishna R.: Mass Transfer in Multicomponent Mixtures. Delft University Press, Delft (2000)Google Scholar
  24. 24.
    Zatorska E.: On the steady flow of a multicomponent, compressible, chemically reacting gas. Nonlinearity 24, 3267–3278 (2011)zbMATHMathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Zatorska E.: On the flow of chemically reacting gaseous mixture. J. Differ. Equ. 253, 3471–3500 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of SciencesBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Institute for Analysis and Scientific ComputingVienna University of TechnologyViennaAustria

Personalised recommendations