Advertisement

Communications in Mathematical Physics

, Volume 340, Issue 2, pp 613–637 | Cite as

The Extensions of \({L_{sl_{2}}(k, 0)}\) and Preunitary Vertex Operator Algebras with Central Charges c < 1

  • Chongying Dong
  • Xingjun LinEmail author
Article

Abstract

The extensions of the affine vertex operator algebras \({L_{sl_{2}}(k, 0)}\) and the preunitary vertex operator algebras with central charges c < 1 are classified. In particular, the unitary vertex operator algebras with central charges c < 1 are classified.

Keywords

Central Charge Vertex Operator Vertex Operator Algebra Tensor Category Conformal Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe T., Buhl G., Dong C.: Rationality, regularity and C 2-cofiniteness. Trans. AMS 356, 3391–3402 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Bakalov, B., Kirillov, A.: Lectures on Tensor Categories and Modular Functors. University Lecture Series, vol. 21 (2000)Google Scholar
  3. 3.
    Borcherds R.: Vertex algebras, Kac–Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    Cappelli A., Itzykson C., Zuber J.: Modular invariant partition function in two dimensions. Nucl. Phys. B 280, 445–464 (1987)zbMATHMathSciNetCrossRefADSGoogle Scholar
  5. 5.
    Cappelli A., Itzykson C., Zuber J.: The A–D–E classification of minimal and \({A_1^{(1)}}\) conformal invariant theories. Commun. Math. Phys. 113, 1–26 (1987)zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Dong C., Han J.: On rationality of vertex operator superalgebras. Int. Math. Res. Not. 16, 4379–4399 (2014)MathSciNetGoogle Scholar
  7. 7.
    Dong, C., Jiang, C.: A characterization of vertex operator algebras \({ V_ {Z\alpha}^{+} }\) : I. J. Reine Angew. Math. (to appear). arXiv:1110.1882
  8. 8.
    Dong C., Jiang C.: A characterization of vertex operator algebras \({ V_ {Z\alpha}^{+} }\) : II. Adv. Math. 247, 41–70 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dong, C., Jiang, C.: A characterization of the vertex operator algebra \({V_{_{2}}^{_{4}}}\). In: Conformal Field Theory, Automorphic Forms and Related Topics (Heidelberg, 2011), pp. 55–74. Contributions in Mathematical and Computational Sciences, vol. 8. Springer, Berlin (2014)Google Scholar
  10. 10.
    Dong C., Jiao X., Xu F.: Mirror extensions of vertex operator algebras. Commun. Math. Phys. 329, 263–294 (2014)zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators. Progress in Mathematics, vol. 112. Birkhäuser, Boston (1993)Google Scholar
  12. 12.
    Dong C., Li H., Mason G.: Regularity of rational vertex operator algebras. Adv. Math. 132, 148–166 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Dong C., Li H., Mason G.: Twisted representations of vertex operator algebras. Math. Ann. 310, 571–600 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Dong C., Li H., Mason G.: Modular invariance of trace functions in orbifold theory and generalized moonshine. Commun. Math. Phys. 214, 1–56 (2000)zbMATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Dong C., Lin X.: Unitary vertex operator algebras. J. Algebra 397, 252–277 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Dong, C., Lin, X., Ng, S.: Congruence propoerty in conformal field theory. arXiv:1201.6644
  17. 17.
    Dong C., Mason G., Zhu Y.: Discrete series of the Virasoro algebra and the moonshine module. Proc. Symp. Pure. Math. AMS 56(II), 295–316 (1994)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Dong C., Mason G.: Rational vertex operator algebras and the effective central charge. Int. Math. Res. Not. 56, 2989–3008 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Dong, C., Mason, G.: Integrability of C 2-cofinite vertex operator algebra. Int. Math. Res. Not. 2006, 15 pp (2006). Article ID 80468Google Scholar
  20. 20.
    Dong C., Zhang W.: On classification of rational vertex operator algebras with central charges less than 1. J. Algebra 320, 86–93 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Frenkel, I., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs American Mathematical Society, vol. 104 (1993)Google Scholar
  22. 22.
    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Pure and Applied Mathematics, vol. 134, Academic Press, Boston (1988)Google Scholar
  23. 23.
    Frenkel I., Zhu Y.: Vertex operator algebras associated to representations of affine and Virasoro algebra. Duke Math. J. 66, 123–168 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Goddard P., Kent A., Olive D.: Unitary representations of the Virasoro Algebra and super-Virasoro algebras. Commun. Math. Phys. 103, 105–119 (1986)zbMATHMathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Huang Y.: A theory of tensor product for moule categories for a vertex operator algebra, IV. J. Pure Appl. Algebra 100, 173–216 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Huang Y.: Generalized rationality and a “Jacobi identity” for intertwining operator algebras. Sel. Math. New Ser. 6, 225–267 (2000)zbMATHCrossRefGoogle Scholar
  27. 27.
    Huang Y.: Vertex operator algebras and Verlinde conjecture. Commun. Contemp. Math. 10, 103–154 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Huang Y.: Rigidity and modularity of vertex operator algebras. Commun. Contemp. Math. 10, 871–911 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Huang Y., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, I. Sel. Math. (N. S) 1, 699–756 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Huang Y., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, II. Sel. Math. (N. S) 1, 756–786 (1995)MathSciNetGoogle Scholar
  31. 31.
    Huang Y., Lepowsky J.: A theory of tensor products for module categories for a vertex operator algebra, III. J. Pure Appl. Algebra 100, 141–171 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Huang, Y., Lepowsky, J.: Tensor products of modules for a vertex operator algebra and vertex tensor categories. In: Brylinski, R., Brylinski, J.-L. (eds.) Lie Theory and Geometry, in honor of Bertram KostantGoogle Scholar
  33. 33.
    Huang Y., Kirillov Jr A., Lepowsky J.L: Braided tensor categories and extensions of vertex operator algebras. Commun. Math. Phys. 337(3), 1143–1159 (2015)CrossRefADSGoogle Scholar
  34. 34.
    Kac V.: Infinite dimensional Lie algebras, 3rd edn. Cambridge University Press, London (1990)CrossRefGoogle Scholar
  35. 35.
    Kac V., Raina A.: Bombay lectures on the highest weight representations of infinite dimensional Lie algebras. World Scientific, Singapore (1987)Google Scholar
  36. 36.
    Kato A.: Classification of modular invariant partition functions in two dimentions. Mod. Phys. Lett. A2, 585–600 (1987)CrossRefADSGoogle Scholar
  37. 37.
    Kawahigashi Y., Longo R.: Classification of local conformal nets: case c < 1. Ann. Math. 160, 493–522 (2004)zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Kirillov A., Ostrik V.: On a q-analog of Mckay correspondence and ADE classification of \({\widehat{sl}_{2}}\) conformal field theories. Adv. Math. 171, 183–227 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  39. 39.
    Lam C., Lam N., Yamauchi H.: Extension of unitary vertex operator algebra by a simple module. Int. Math. Res. Not. 11, 577–611 (2003)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Li H.: Extension of vertex operator algera by a self-dual simple module. J. Algebra 187, 236–267 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  41. 41.
    Lin, X.: Mirror extensions of rational vertex operator algebras.arXiv:1411.6742
  42. 42.
    Lepowsky, J., Li, H.: Introduction to vertex operator algebras and their representations. Progress in Mathematics, vol. 227, Birkhäuser, Boston (2004)Google Scholar
  43. 43.
    Mason, G.: Lattice subalgebra of strongly regular vertex operator algebras. In: Conformal Field Theory, Automorphic Forms and Related Topics (Heidelberg, 2011), pp. 31–53. Contributions in Mathematical and Computational Sciences, vol. 8. Springer, Berlin (2014)Google Scholar
  44. 44.
    Schellekens A., Warner N.: Conformal subalgebras of Kac–Moody algebras. Phys. Rev. D 34, 3092–3096 (1986)MathSciNetCrossRefADSGoogle Scholar
  45. 45.
    Wang W.: Rationality of Virasoro vertex operator algebras. Int. Math. Res. Not. 7, 197–211 (1993)CrossRefGoogle Scholar
  46. 46.
    Zhu Y.: Modular invariance of characters of vertex operator algebras. J. AMS 9, 237–302 (1996)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of CaliforniaSanta CruzUSA
  2. 2.Institute of MathematicsAcademia SinicaTaipeiTaiwan

Personalised recommendations