Skip to main content
Log in

Self-Similar Solutions for a Fractional Thin Film Equation Governing Hydraulic Fractures

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, self-similar solutions for a fractional thin film equation governing hydraulic fractures are constructed. One of the boundary conditions, which accounts for the energy required to break the rock, involves the toughness coefficient K ≥ 0. Mathematically, this condition plays the same role as the contact angle condition in the thin film equation. We consider two situations: The zero toughness (K = 0) and the finite toughness K ∈ (0, ∞) cases. In the first case, we prove the existence of self-similar solutions with constant mass. In the second case, we prove that for all K > 0 there exists an injection rate for the fluid such that self-similar solutions exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, J.I., Detournay, E.: Plane-strain propagation of a fluid-driven fracture: finite toughness self-similar solution. Proc. R. Soc. Lond. Ser. A (1994)

  2. Adachi J.I., Peirce A.P.: Asymptotic analysis of an elasticity equation for a finger-like hydraulic fracture. J. Elast. 90, 43–69 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barenblatt G.I.: On some unsteady motions of a liquid and gas in a porous medium. Akad. Nauk SSSR. Prikl. Mat. Meh. 16, 67–78 (1952)

    MATH  MathSciNet  Google Scholar 

  4. Barenblatt G.I.: The mathematical theory of equilibrium cracks formed in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  5. Bernis F., Peletier L.A., Williams S.M.: Source type solutions of a fourth order nonlinear degenerate parabolic equation. Nonlinear Anal. 18, 217–234 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Biler P., Imbert C., Karch G.: Barenblatt profiles for a nonlocal porous medium equation. C. R. Math. Acad. Sci. Paris 349, 641–645 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Biler P., Imbert C., Karch G.: The nonlocal porous medium equation: Barenblatt profiles and other weak solutions. Arch. Ration. Mech. Anal. 215, 497–529 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  8. Blumenthal R.M., Getoor R.K., Ray D.B.: On the distribution of first hits for the symmetric stable processes. Trans. Am. Math. Soc. 99, 540–554 (1961)

    MATH  MathSciNet  Google Scholar 

  9. Crouch, S.L., Starfield, A.M.: Boundary element methods in solid mechanics. In: George Allen & Unwin, London-Boston, Mass., 1983. With applications in rock mechanics and geological engineering

  10. Desroches J., Detournay E., Lenoach B., Papanastasiou P., Pearson J.R.A., Thiercelin M., Cheng A.: The crack tip region in hydraulic fracturing. Proc. R. Soc. Lond. A 447, 39–48 (1994)

    Article  MATH  ADS  Google Scholar 

  11. Ferreira R., Bernis F.: Source-type solutions to thin-film equations in higher dimensions. Eur. J. Appl. Math. 8, 507–524 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Garagash D.I.: Plane-strain propagation of a fluid-driven fracture during injection and shut-in: Asymptotics of large toughness. Eng. Fract. Mech. 73, 456–481 (2006)

    Article  Google Scholar 

  13. Geertsma J., deKlerk F.: A rapid method of predicting width and extent of hydraulically induced fractures. J. Petroleum Technol. 21, 1571–1581 (1969)

    Article  Google Scholar 

  14. Imbert C., Mellet A.: Existence of solutions for a higher order non-local equation appearing in crack dynamics. Nonlinearity 24, 3487–3514 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Mitchell S.L., Kuske R., Peirce A.P.: An asymptotic framework for the analysis of hydraulic fractures: the impermeable case. J. Appl. Mech. 74, 365–372 (2006)

    Article  Google Scholar 

  16. Mitchell, S.L., Kuske, R., Peirce, A.P.: An asymptotic framework for finite hydraulic fractures including leak-off. SIAM J. Appl. Math. 67, 364–386 (electronic) (2006/07)

  17. Peirce, A.: Notes about fractures. Personal communication

  18. Peirce A., Detournay E.: An implicit level set method for modeling hydraulically driven fractures. Comput. Methods Appl. Mech. Eng. 197, 2858–2885 (2008)

    Article  MATH  ADS  Google Scholar 

  19. Peirce A., Detournay E.: An Eulerian moving front algorithm with weak-form tip asymptotics for modeling hydraulically driven fractures. Commun. Numer. Methods Eng. 25, 185–200 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Peirce A.P., Siebrits E.: A dual mesh multigrid preconditioner for the efficient solution of hydraulically driven fracture problems. Int. J. Numer. Methods Eng. 63, 1797–1823 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peirce, A.P., Siebrits, E.: An Eulerian finite volume method for hydraulic fracture problems. In: Finite Volumes for Complex Applications IV, ISTE, pp. 655–664. London (2005)

  22. Riesz M.: Intégrales de riemann-liouville et potentiels. Acta Litt. Sci. Szeged 9, 1–42 (1938)

    MathSciNet  ADS  Google Scholar 

  23. Spence D.A., Sharp P.: Self-similar solutions for elastohydrodynamic cavity flow. Proc. R. Soc. Lond. Ser. A 400, 289–313 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Zeldovich, Y.B., Kompaneets, A.: Towards a theory of heat conduction with thermal conductivity depending on the temperature. In: Collection of Papers Dedicated to 70th Birthday of Academician AF Ioffe, pp. 61–71. Izd. Akad. Nauk SSSR, Moscow (1950)

  25. Zheltov Y.P., Khristianovich S.A.: On hydraulic fracturing of an oil-bearing stratum. Izv. Akad. Nauk SSSR. Otdel Tekhn. Nauk 5, 3–41 (1955)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mellet.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbert, C., Mellet, A. Self-Similar Solutions for a Fractional Thin Film Equation Governing Hydraulic Fractures. Commun. Math. Phys. 340, 1187–1229 (2015). https://doi.org/10.1007/s00220-015-2459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2459-9

Keywords

Navigation