Advertisement

Communications in Mathematical Physics

, Volume 340, Issue 2, pp 699–832 | Cite as

Branes and Supergroups

  • Victor Mikhaylov
  • Edward WittenEmail author
Article

Abstract

Extending previous work that involved D3-branes ending on a fivebrane with \({\theta_{\mathrm{YM}}\neq 0}\), we consider a similar two-sided problem. This construction, in case the fivebrane is of NS type, is associated to the three-dimensional Chern–Simons theory of a supergroup \({{\rm U}(m|n)}\) or \({{\rm OS}_{\rm p}(m|2n)}\) rather than an ordinary Lie group as in the one-sided case. By S-duality, we deduce a dual magnetic description of the supergroup Chern–Simons theory; a slightly different duality, in the orthosymplectic case, leads to a strong-weak coupling duality between certain supergroup Chern–Simons theories on \({\mathbb{R}^{3}}\); and a further T-duality leads to a version of Khovanov homology for supergroups. Some cases of these statements are known in the literature. We analyze how these dualities act on line and surface operators.

Keywords

Gauge Group Wilson Line Surface Operator Line Operator Mill Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Witten, E.: Fivebranes and knots. Quantum Topol. 1, 1–137 (2012). arXiv:1101.3216
  2. 2.
    Gaiotto, D., Witten, E.: Supersymmetric boundary conditions in \({\mathcal{N}=4}\) super Yang–Mills theory. J. Stat. Phys. 135, 789–855 (2009). arXiv:0804.2902
  3. 3.
    Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1, 1–236 (2007). arXiv:hep-th/0604151
  4. 4.
    Witten, E.: Analytic continuation of Chern–Simons theory. In: Andersen, J.E., et al. (eds.) Chern–Simons Gauge Theory: Twenty Years After. American Mathematical Society, Providence, pp. 347–446 (2011). arXiv:1001.2933
  5. 5.
    Witten, E.: A new look at the path integral of quantum mechanics. arXiv:1009.6032
  6. 6.
    Khovanov M.: A categorification of the Jones polynomial. Duke. Math. J. 101, 359–426 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Gukov, S., Schwarz, A.S., Vafa, C.: Khovanov–Rozansky homology and topological strings. Lett. Math. Phys. 74, 53–74 (2005). arXiv:hep-th/0412243
  8. 8.
    Ooguri, H., Vafa, C.: Knot invariants and topological strings. Nucl. Phys. B 577, 419 (2000). arXiv:hep-th/9912123
  9. 9.
    Gaiotto, D., Witten, E.: Janus configurations, Chern–Simons couplings, and the theta-angle in \({\mathcal{N}=4}\) super Yang–Mills theory. JHEP 1006, 097 (2010). arXiv:0804.2907
  10. 10.
    Kapustin, A., Saulina, N.: Chern–Simons–Rozansky–Witten topological field theory. Nucl. Phys. B 823, 403 (2009). arXiv:0904.1447
  11. 11.
    Witten, E.: Baryons and branes in anti-de Sitter space. JHEP 9807, 006 (1998). arXiv:hep-th/9805112
  12. 12.
    Hanany, A., Kol, B.: On orientifolds, discrete torsion, branes and M theory. JHEP 0006, 013 (2000). arXiv:hep-th/0003025
  13. 13.
    Feng, B., Hanany, A.: Mirror symmetry by O3 planes. JHEP 0011, 033 (2000). arXiv:hep-th/0004092
  14. 14.
    Evans, N.J., Johnson, C.V., Shapere, A.D.: Orientifolds, branes, and duality of 4-D gauge theories. Nucl. Phys. B 505, 251 (1997). arXiv:hep-th/9703210
  15. 15.
    Gaiotto, D., Witten, E.: S-duality of boundary conditions in \({\mathcal{N}=4}\) super Yang–Mills theory. Adv. Theor. Math. Phys. 13(3), 721–896 (2009). arXiv:0807.3720
  16. 16.
    Ozsvath, P., Rasmussen, J., Szabo, Z.: Odd Khovanov homology, Algebraic Geom. Topol. 13, 1465–1488 (2103). arXiv:0710.4300
  17. 17.
    Ellis, A.P., Lauda, A.D.: An odd categorification of quantum sl(2). arXiv:1307.7816
  18. 18.
    Zhang R.B.: Braid group representations arising from quantum supergroups with arbitrary q and link polynomials. J. Math. Phys. 33, 3918–3930 (1992)zbMATHMathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Links J.R., Gould M.D., Zhang R.B.: Quantum supergroups, link polynomials, and representations of the braid generator. Rev. Math. Phys. 5, 345–361 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhang R.B.: Three-manifold invariants arising from \({\mathcal{U}_q(\mathfrak{osp}(1|2))}\). Mod. Phys. Lett. A 9, 1453–1465 (1994)zbMATHCrossRefADSGoogle Scholar
  21. 21.
    Blumen, S.: Topological invariants of three-manifolds from \({\mathcal{U}_q(\mathfrak{osp}(1|2n))}\). arXiv:math/0209218
  22. 22.
    Horne J.H.: Skein relations and Wilson loops in Chern–Simons gauge theory. Nucl. Phys. B 334, 669 (1990)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Vafa, C.: Brane/anti-brane systems and U(N|M) supergroup. arXiv:hep-th/0101218
  24. 24.
    Hanany, A., Witten, E.: Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics. Nucl. Phys. B 492, 152 (1997). arXiv:hep-th/9611230
  25. 25.
    Witten E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)zbMATHCrossRefADSGoogle Scholar
  26. 26.
    Kac, V.G.: Representations of classical Lie superalgebras. In: Differential Geometrical Methods in Mathematical Physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), pp. 597–626. Lecture Notes in Mathematics, vol. 676. Springer, Berlin (1978)Google Scholar
  27. 27.
    Quella, T., Schomerus, V.: Superspace conformal field theory. J. Phys. A 46, 494010 (2013). arXiv:1307.7724
  28. 28.
    Frappat, L., Sorba, P., Sciarrino, A.: Dictionary on Lie superalgebras. arXiv:hep-th/9607161
  29. 29.
    Kac, V.G., Wakimoto, M.: Integrable highest weight modules over affine superalgebras and number theory. In: Lie Theory and Geometry, pp. 415–456. Progress in Mathematics, vol. 123. Birkhäuser, Boston (1994)Google Scholar
  30. 30.
    Serganova, V.: On the superdimension of an irreducible representation of a basic classical Lie superalgebra. In: Supersymmetry in Mathematics and Physics. Lecture Notes in Mathematics, pp. 253–273 (2011)Google Scholar
  31. 31.
    Humphreys, J.E.: Introduction to Lie Algebras and Representation Theory. In: Graduate Texts in Mathematics, vol. 9 Springer, New York (1978)Google Scholar
  32. 32.
    Kac, V.G.: Laplace operators of infinite-dimensional Lie algebras and theta functions. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 81, issue 2. Physical Sciences, pp. 645–647 (1984)Google Scholar
  33. 33.
    Gruson C., Serganova V.: Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras. Proc. Lond. Math. Soc. 101(3), 852–892 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Elitzur S., Moore G.W., Schwimmer A., Seiberg N.: Remarks on the canonical quantization of the Chern–Simons–Witten theory. Nucl. Phys. B 326, 108 (1989)MathSciNetCrossRefADSGoogle Scholar
  35. 35.
    Beasley, C.: Localization for Wilson loops in Chern–Simons theory. Adv. Theor. Math. Phys. 17, 1–240 (2013). arXiv:0911.2687
  36. 36.
    Penkov, I.B.: An introduction to geometric representation theory for complex simple Lie superalgebras. In: Differential Geometric Methods in Theoretical Physics (Shumen, 1984), pp. 89–106. World Scientific Publishing, Singapore (1986)Google Scholar
  37. 37.
    Mikhaylov, V.: On the solutions of generalized Bogomolny equations. JHEP 1205, 112 (2012). arXiv:1202.4848
  38. 38.
    Kapustin, A.: Wilson–’t Hooft operators in four-dimensional gauge theories and S-duality. Phys. Rev. D 74, 025005 (2006). arXiv:hep-th/0501015
  39. 39.
    Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands program. In: David, J., et al. (eds.) Current Developments in Mathematics. International Press, Somerville (2008). arXiv:hep-th/0612073
  40. 40.
    Gukov, S., Witten, E.: Rigid surface operators. Adv. Theor. Math. Phys. 14, 87 (2010). arXiv:0804.1561
  41. 41.
    Atiyah, M.F.: On framings of 3-manifolds. Topology 29(1), 1–7 (1990)Google Scholar
  42. 42.
    Srivastava, N.: Spectral sparsification and restricted invertibility. Ph.D. thesis, Yale University (2010). http://www.cs.yale.edu/homes/srivastava/dissertation.pdf
  43. 43.
    Constable, N.R., Myers, R.C., Tafjord, O.: Fuzzy funnels: nonabelian brane intersections. arXiv:hep-th/0105035
  44. 44.
    Witten E.: Introduction to cohomological field theories. Int. J. Mod. Phys. A 6, 2775–2792 (1991)zbMATHCrossRefADSGoogle Scholar
  45. 45.
    Rozansky L., Saleur H.: Quantum field theory for the multivariable Alexander–Conway polynomial. Nucl. Phys. B 376, 461 (1992)MathSciNetCrossRefADSGoogle Scholar
  46. 46.
    Rozansky L., Saleur H.: S and T matrices for the super \({{\rm U}(1|1)}\) WZW model. Nucl. Phys. B 389, 365–423 (1993)MathSciNetCrossRefADSGoogle Scholar
  47. 47.
    Rozansky, L., Saleur, H.: Reidemeister torsion, the Alexander polynomial, and \({{\rm U}(1|1)}\) Chern–Simons theory. J. Geom. Phys. 13, 105–123 (1994). arXiv:hep-th/9209073
  48. 48.
    Meng G., Taubes C.H.: SW=Milnor torsion. Math. Res. Lett. 3, 661–674 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  49. 49.
    Redlich A.N.: Parity violation and gauge noninvariance of the effective gauge field action in three-dimensions. Phys. Rev. D 29, 2366 (1984)MathSciNetCrossRefADSGoogle Scholar
  50. 50.
    Alvarez-Gaume L., Witten E.: Gravitational anomalies. Nucl. Phys. B 234, 269 (1984)MathSciNetCrossRefADSGoogle Scholar
  51. 51.
    Witten E.: An SU(2) anomaly. Phys. Lett. B 117, 324–328 (1982)MathSciNetCrossRefADSGoogle Scholar
  52. 52.
    Hasan M.Z., Kane C.L.: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010)CrossRefADSGoogle Scholar
  53. 53.
    Qi X.-L., Zhang S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011)CrossRefADSGoogle Scholar
  54. 54.
    Hasan M.Z., Moore J.E.: Three-dimensional topological insulators. Annu. Rev. Condens. Matt. Phys. 2, 55 (2011)CrossRefADSGoogle Scholar
  55. 55.
    Bernevig, A., (with T. L. Hughes): Topological Insulators and Topological Superconductors. Princeton University Press, Princeton (2013)Google Scholar
  56. 56.
    Atiyah M.F., Patodi V., Singer I.: Spectral asymmetry and Riemannian geometry I. Math. Proc. Camb. Philos. Soc. 77, 43 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  57. 57.
    Atiyah M.F., Patodi V., Singer I.: Spectral asymmetry and Riemannian geometry II. Math. Proc. Camb. Philos. Soc. 78, 405 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  58. 58.
    Atiyah M.F., Patodi V., Singer I.: Spectral asymmetry and Riemannian geometry III. Math. Proc. Camb. Philos. Soc. 79, 71 (1976)zbMATHMathSciNetCrossRefGoogle Scholar
  59. 59.
    Mazzeo, R., Witten, E.: The Nahm pole boundary condition. In: The Influence of Solomon Lefschetz in Geometry and Topology. Contemporary Mathematics, vol. 621, pp. 171–226 (2013). arXiv:1311.3167 [math]
  60. 60.
    Ennes, I.P., Ramadevi, P., Ramallo, A.V., Sanchez de Santos, J.M.: Duality in \({\mathfrak{osp}(1|2)}\) conformal field theory and link invariants. Int. J. Mod. Phys. A 13, 2931 (1998). arXiv:hep-th/9709068
  61. 61.
    Blumen S.C.: On the \({{\rm U}_q(osp(1|2n))}\) and \({{\rm U}_{-q}(so(2n+1))}\) uncolored quantum link invariants. J. Knot Theory Ramif. 19(3), 335–353 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  62. 62.
    Zhang R.B.: Finite-dimensional representations of \({{\rm U}_q(\mathfrak{osp}(1|2n))}\) and its connection with quantum \({\mathfrak{so}(2n+1)}\). Lett. Math. Phys. 25, 317–325 (1992)zbMATHMathSciNetCrossRefADSGoogle Scholar
  63. 63.
    Rittenberg V., Scheunert M.: A remarkable connection between the representations of the Lie superalgebras \({\mathfrak{osp}(1|2n)}\) and the Lie algebras \({\mathfrak{o}(2n+1)}\). Commun. Math. Phys. 83, 1–9 (1982)zbMATHMathSciNetCrossRefADSGoogle Scholar
  64. 64.
    Vafa, C., Witten, E.: A strong coupling test of S duality. Nucl. Phys. B 431, 3 (1994). arXiv:hep-th/9408074
  65. 65.
    Baha Balantekin A., Bars I.: Dimension and character formulas for Lie supergroups. J. Math. Phys. 22, 1149 (1981)zbMATHMathSciNetCrossRefADSGoogle Scholar
  66. 66.
    Farmer R.J., Jarvis P.D.: Representations of orthosymplectic superalgebras. II. Young diagrams and weight space techniques. J. Phys. A 17(12), 2365–2387 (1984)zbMATHMathSciNetCrossRefADSGoogle Scholar
  67. 67.
    Cummins C.J., King R.C.: Young diagrams, supercharacters of \({{\rm OS}_{\rm p}(M|N)}\) and modification rules. J. Phys. A 20(11), 3103–3120 (1987)zbMATHMathSciNetCrossRefADSGoogle Scholar
  68. 68.
    Witten, E.: Supersymmetric index in four-dimensional gauge theories. Adv. Theor. Math. Phys. 5, 841 (2002). arXiv:hep-th/0006010
  69. 69.
    Gaiotto, D., Witten, E.: Knot invariants from four-dimensional gauge theory. Adv. Theor. Math. Phys. 16(3), 935–1086 (2012). arXiv:1106.4789
  70. 70.
    Candu, C., Creutzig, T., Mitev, V., Schomerus, V.: Cohomological reduction of sigma models. JHEP 1005, 047 (2010). arXiv:1001.1344
  71. 71.
    Witten, E.: Khovanov homology and gauge theory. Geom. Topol. Monogr. 18, 291–308 (2102). arXiv:1108.3103
  72. 72.
    Witten, E.: Two lectures on the Jones polynomial and Khovanov homology. arXiv:1401.6996 [math.GT]
  73. 73.
    Witten E.: Supersymmetry and Morse theory. J. Differ. Geom. 17, 661 (1982)zbMATHGoogle Scholar
  74. 74.
    Gaiotto, D., Moore, G., Witten, E.: Algebra of the infrared: string field theoretic structures in massive N = (2,2) field theory in two dimensions. arXiv:1506.04087
  75. 75.
    Hori, K., Katz, S., Klemm, A., Pandharipande, R., Thomas, R., Vafa, C., Vakil, R., Zaslow, E.: Mirror Symmetry. Clay Mathematics Monographs, vol. 1Google Scholar
  76. 76.
    Gorsky, E., Gukov, S., Stosic, M.: Quadruply-graded colored homology of knots. arXiv:1304.3481
  77. 77.
    Callan, C.G. Jr.., Harvey, J.A.: Anomalies and fermion zero-modes on strings and domain walls. Nucl. Phys. B 250, 427–436 (1985)Google Scholar
  78. 78.
    DeWolfe, O., Freedman, D.Z., Ooguri, H.: Holography and defect conformal field theories. Phys. Rev. D 66, 025009 (2002). arXiv:hep-th/0111135
  79. 79.
    Witten E.: Topological quantum field theory. Commun. Math. Phys. 117, 353 (1988)zbMATHCrossRefADSGoogle Scholar
  80. 80.
    Boe B.D., Kujawa J.R., Nakano D.K.: Cohomology and support varieties for Lie superalgebras. Trans. Am. Math. Soc. 362(12), 6551–6590 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  81. 81.
    Bar-Natan D., Witten E.: Perturbative expansion of Chern–Simons theory with noncompact gauge group. Commun. Math.Phys. 141, 423 (1991)zbMATHMathSciNetCrossRefADSGoogle Scholar
  82. 82.
    Witten E.: On holomorphic factorization of WZW and coset models. Commun. Math. Phys. 144, 189–212 (1992)zbMATHCrossRefADSGoogle Scholar
  83. 83.
    Mikhaylov, V.: Analytic torsion, 3d mirror symmetry and supergroup Chern-Simons theories. arXiv:1505.03130
  84. 84.
    Freed D.S., Gompf R.E.: Computer calculation of Witten’s 3-manifold invariant. Commun. Math. Phys. 141(1), 79–117 (1991)zbMATHMathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsPrinceton UniversityPrincetonUSA
  2. 2.School of Natural SciencesInstitute for Advanced StudyPrincetonUSA

Personalised recommendations