Advertisement

Communications in Mathematical Physics

, Volume 340, Issue 2, pp 661–697 | Cite as

Wedge-Local Fields in Integrable Models with Bound States

  • Daniela Cadamuro
  • Yoh TanimotoEmail author
Open Access
Article

Abstract

Recently, large families of two-dimensional quantum field theories with factorizing S-matrices have been constructed by the operator-algebraic methods, by first showing the existence of observables localized in wedge-shaped regions. However, these constructions have been limited to the class of S-matrices whose components are analytic in rapidity in the physical strip. In this work, we construct candidates for observables in wedges for scalar factorizing S-matrices with poles in the physical strip and show that they weakly commute on a certain domain. We discuss some technical issues concerning further developments, especially the self-adjointness of the candidate operators here and strong commutativity between them.

Keywords

Integrable Model Local Observable Bootstrap Equation Physical Strip Strong Commutativity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alazzawi S.: Deformations of fermionic quantum field theories and integrable models. Lett. Math. Phys. 103(1), 37–58 (2013)zbMATHMathSciNetCrossRefADSGoogle Scholar
  2. 2.
    Alazzawi, S.: Deformations of quantum field theories and the construction of interacting models. (2014). Ph.D. thesis, Universität Wien. http://arxiv.org/abs/1503.00897
  3. 3.
    Babujian, H., Karowski, M.: Towards the construction of Wightman functions of integrable quantum field theories. In: Proceedings of 6th International Workshop on Conformal Field Theory and Integrable Models, vol. 19, pp. 34–49 (2004)Google Scholar
  4. 4.
    Babujian H.M., Foerster A., Karowski M.: The form factor program: a review and new results—the nested SU(N) off-shell Bethe ansatz. SIGMA 2, 082 (2006)MathSciNetGoogle Scholar
  5. 5.
    Babujian H., Foerster A., Karowski M.: Exact form factors in integrable quantum field theories: the scaling Z(N)-Ising model. Nucl. Phys. B 736(3), 169–198 (2006)zbMATHMathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Bischoff M.: Models in boundary quantum field theory associated with lattices and loop group models. Commun. Math. Phys. 315(3), 827–858 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Bischoff M., Tanimoto Y.: Construction of wedge-local nets of observables through Longo–Witten endomorphisms. II. Commun. Math. Phys. 317(3), 667–695 (2013)zbMATHMathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Bischoff M., Tanimoto Y.: Integrable QFT and Longo–Witten endomorphisms. Ann. Henri Poincaré 16(2), 569–608 (2015)zbMATHMathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Borchers H.-J.: The CPT-theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143(2), 315–332 (1992)zbMATHMathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Borchers H.J., Buchholz D., Schroer B.: Polarization-free generators and the S-matrix. Commun. Math. Phys. 219(1), 125–140 (2001)zbMATHMathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Bostelmann H., Cadamuro D.: An operator expansion for integrable quantum field theories. J. Phys. A 46(9), 095401,25 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Bostelmann H., Cadamuro D.: Characterization of local observables in integrable quantum field theories. Commun. Math. Phys. 337(3), 1199–1240 (2015)MathSciNetCrossRefADSGoogle Scholar
  13. 13.
    Buchholz D., D’Antoni C., Longo R.: Nuclear maps and modular structures. I. General properties. J. Funct. Anal. 88(2), 233–250 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Buchholz D., Lechner G.: Modular nuclearity and localization. Ann. Henri Poincaré 5(6), 1065–1080 (2004)zbMATHMathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Buchholz D., Lechner G., Summers S.J.: Warped convolutions, Rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304(1), 95–123 (2011)zbMATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Cadamuro, D.: A characterization theorem for local operators in factorizing scattering models. Ph.D. thesis, Universität Göttingen (2012). http://arxiv.org/abs/1211.3583
  17. 17.
    Cadamuro, D., Tanimoto, Y.: (2015) (in preparation)Google Scholar
  18. 18.
    Cardy J.L., Mussardo G.: S-matrix of the Yang-Lee edge singularity in two dimensions. Phys. Lett. B 225(3), 275–278 (1989)MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Dorey, P.: Exact S-matrices. In: Conformal field theories and integrable models (Budapest, 1996). Lecture Notes in Physics, vol. 498, pp. 85–125. Springer, Berlin (1997)Google Scholar
  20. 20.
    Driessler, W., Fröhlich, J.: The reconstruction of local observable algebras from the euclidean green’s functions of relativistic quantum field theory. In: Annales de L’Institut Henri Poincare Section Physique Theorique, vol. 27, pp. 221–236 (1977)Google Scholar
  21. 21.
    Dybalski W., Tanimoto Y.: Asymptotic completeness in a class of massless relativistic quantum field theories. Commun. Math. Phys. 305(2), 427–440 (2011)zbMATHMathSciNetCrossRefADSGoogle Scholar
  22. 22.
    Fring A., Mussardo G., Simonetti P.: Form factors of the elementary field in the Bullough–Dodd model. Phys. Lett. B 307(1–2), 83–90 (1993)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    Fröhlich J., Seiler E.: The massive Thirring–Schwinger model (QED2): convergence of perturbation theory and particle structure. Helv. Phys. Acta 49(6), 889–924 (1976)MathSciNetGoogle Scholar
  24. 24.
    Grosse, H., Lechner, G.: Wedge-local quantum fields and noncommutative Minkowski space. J. High Energy Phys. 11:012,26 (2007)Google Scholar
  25. 25.
    Haag, R.: Local quantum physics. In: Texts and Monographs in Physics, Fields, Particles, Algebras, 2nd edn. Springer, Berlin, (1996)Google Scholar
  26. 26.
    Korff, C.: Lie algebraic structures in integrable models, affine Toda field theory. Ph.D. Thesis, Freie Universität Berlin (2000). http://arxiv.org/abs/hep-th/0008200
  27. 27.
    Lechner G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64(2), 137–154 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Lechner, G.: On the construction of quantum field theories with factorizing S-matrices. Ph.D. Thesis, Universität Göttingen (2006). http://arxiv.org/abs/math-ph/0611050
  29. 29.
    Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277(3), 821–860 (2008)zbMATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    Lechner G.: Deformations of quantum field theories and integrable models. Commun. Math. Phys. 312(1), 265–302 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  31. 31.
    Lechner G., Longo R.: Localization in nets of standard spaces. Commun. Math. Phys. 336(1), 27–61 (2015)zbMATHMathSciNetCrossRefADSGoogle Scholar
  32. 32.
    Lechner G., Schlemmer J., Tanimoto Y.: On the equivalence of two deformation schemes in quantum field theory. Lett. Math. Phys. 103(4), 421–437 (2013)zbMATHMathSciNetCrossRefADSGoogle Scholar
  33. 33.
    Lechner G., Schützenhofer C.: Towards an operator-algebraic construction of integrable global gauge theories. Ann. Henri Poincaré 15(4), 645–678 (2014)zbMATHCrossRefADSGoogle Scholar
  34. 34.
    Longo, R.: Real Hilbert subspaces, modular theory, \({{\rm SL}(2, \mathbf{R})}\) and CFT. In: Von Neumann algebras in Sibiu: Conference Proceedings, pp. 33–91. Theta, Bucharest (2008)Google Scholar
  35. 35.
    Longo R., Witten E.: An algebraic construction of boundary quantum field theory. Commun. Math. Phys. 303(1), 213–232 (2011)zbMATHMathSciNetCrossRefADSGoogle Scholar
  36. 36.
    Quella, T.: Formfactors and locality in integrable models of quantum field theory in 1+1 dimensions. Diploma thesis, Freie Universität Berlin (1999) (in German). http://www.thp.uni-koeln.de/~tquella/1999QuellaDiploma
  37. 37.
    Reed, M., Simon, B.: Methods of modern mathematical physics. II. In: Fourier Analysis, Self-Adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1975)Google Scholar
  38. 38.
    Rudin W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)zbMATHGoogle Scholar
  39. 39.
    Schroer B.: Modular localization and the bootstrap-formfactor program. Nucl. Phys. B 499(3), 547–568 (1997)zbMATHMathSciNetCrossRefADSGoogle Scholar
  40. 40.
    Schroer B.: Modular wedge localization and the d = 1 + 1 formfactor program. Ann. Phys. 275(2), 190–223 (1999)zbMATHMathSciNetCrossRefADSGoogle Scholar
  41. 41.
    Smirnov, F.A.: Form factors in completely integrable models of quantum field theory. In: Advanced Series in Mathematical Physics, vol. 14. World Scientific Publishing Co. Inc., River Edge (1992)Google Scholar
  42. 42.
    Takesaki, M.: Theory of operator algebras. II. In: Encyclopaedia of Mathematical Sciences, Operator Algebras and Non-commutative Geometry, 6, vol. 125. Springer, Berlin (2003)Google Scholar
  43. 43.
    Tanimoto Y.: Construction of wedge-local nets of observables through Longo–Witten endomorphisms. Commun. Math. Phys. 314(2), 443–469 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  44. 44.
    Tanimoto Y.: Construction of two-dimensional quantum field models through Longo–Witten endomorphisms. Forum Math. Sigma 2, e7 (2014)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Tanimoto, Y.: Self-adjointness of bound state operators in integrable quantum field theory. (2015). arXiv:1508.06402
  46. 46.
    Zamolodchikov A.B., Zamolodchikov A.B.: Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models. Ann. Phys. 120(2), 253–291 (1979)MathSciNetCrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BristolBristolUK
  2. 2.Graduate School of Mathematical SciencesThe University of Tokyo and Institut für Theoretische Physik, Göttingen UniversityTokyoJapan

Personalised recommendations