Skip to main content
Log in

Black Hole Instabilities and Exponential Growth

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Recently, a general analysis has been given of the stability with respect to axisymmetric perturbations of stationary-axisymmetric black holes and black branes in vacuum general relativity in arbitrary dimensions. It was shown that positivity of canonical energy on an appropriate space of perturbations is necessary and sufficient for stability. However, the notions of both “stability” and “instability” in this result are significantly weaker than one would like to obtain. In particular, if there exists a perturbation with negative canonical energy, “instability” has been shown to occur only in the sense that this perturbation cannot asymptotically approach a stationary perturbation at late times. In this paper, we prove that if a perturbation of the form \({\pounds_t \delta g}\)—with \({\delta g}\) a solution to the linearized Einstein equation—has negative canonical energy, then that perturbation must, in fact, grow exponentially in time. The key idea is to make use of the t- or (t-ϕ)-reflection isometry, i, of the background spacetime and decompose the initial data for perturbations into their odd and even parts under i. We then write the canonical energy as \({\mathscr{E} = \mathscr{K} + \mathscr{U}}\), where \({\mathscr{K}}\) and \({\mathscr{U}}\), respectively, denote the canonical energy of the odd part (“kinetic energy”) and even part (“potential energy”). One of the main results of this paper is the proof that \({\mathscr{K}}\) is positive definite for any black hole background. We use \({\mathscr{K}}\) to construct a Hilbert space \({\mathscr{H}}\) on which time evolution is given in terms of a self-adjoint operator \(\tilde{\mathcal{A}}\), whose spectrum includes negative values if and only if \({\mathscr{U}}\) fails to be positive. Negative spectrum of \(\tilde{\mathcal{A}}\) implies exponential growth of the perturbations in \({\mathscr{H}}\) that have nontrivial projection into the negative spectral subspace. This includes all perturbations of the form \({\pounds_t \delta g}\) with negative canonical energy. A “Rayleigh-Ritz” type of variational principle is derived, which can be used to obtain lower bounds on the rate of exponential growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Christodoulou D., Klainerman S.: The Global Nonlinear Stability of the Minkowski Space. Princeton University Press, New Jersey (1993)

    MATH  Google Scholar 

  2. Wald, R.M.: Note on the stability of the Schwarzschild metric. J. Math. Phys. 20(6), 1056–1058 (1979). Erratum. J. Math. Phys. 21(1), 218–218 (1980)

  3. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. Clay Math. Proc. 17, 97–205. arXiv:0811.0354

  4. Wald R.M.: On the instability of the n = 1 Einstein Yang-Mills black holes and mathematically related systems. J. Math. Phys. 33, 248–255 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Kay B.S., Wald R.M.: Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation two-sphere. Class. Quant. Grav. 4, 893–898 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Finster, F., Kamran, N.,Smoller, J., Yau, S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264(2), 465–503 (2006). arXiv:gr-qc/0504047

  7. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime (2009). arXiv:0908.2265

  8. Tataru, D.: Local decay of waves on asymptotically flat stationary space-times. Am. J. Math. 135(2), 361–401 (2013). arXiv:0910.5290

  9. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case |a| < M (2014). arXiv:1402.7034

  10. Regge T., Wheeler J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Zerilli F.J.: Effective potential for even parity Regge-Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737–738 (1970)

    Article  ADS  Google Scholar 

  12. Ishibashi, A., Kodama, H.: Stability of higher dimensional Schwarzschild black holes. Prog. Theor. Phys. 110, 901–919 (2003). arXiv:hep-th/0305185

  13. Hollands, S., Wald, R.M.: Stability of black holes and black branes. Commun. Math. Phys. 321, 629–680 (2013). arXiv:1201.0463

  14. Figueras, P., Murata, K., Reall, H.S.: Black hole instabilities and local Penrose inequalities. Class. Quant. Grav. 28, 225030 (2011). arXiv:1107.5785

  15. Chrusciel, P.T., Wald, R.M.: Maximal hypersurfaces in stationary asymptotically flat spacetimes. Commun. Math. Phys. 163(3), 561–604 (1994). arXiv:gr-qc/9304009

  16. Schiffrin, J.S., Wald, R.M.: Reflection symmetry in higher dimensional black hole spacetimes. Class. Quant. Grav. 32(10), 105005 (2015). arXiv:1501.02752

  17. Sorkin R.: Kaluza-Klein monopole. Phys. Rev. Lett. 51, 87–90 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  18. Gross D.J., Perry M.J.: Magnetic monopoles in Kaluza-Klein theories. Nucl. Phys. B226, 29–48 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  19. Wald R.M.: General relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  20. Laval G., Mercier C., Pellat R.: Necessity of the energy principles for magnetostatic stability. Nucl. Fusion 5(2), 156 (1965)

    Article  MathSciNet  Google Scholar 

  21. Choquet-Bruhat Y.: General Relativity and the Einstein Equations. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  22. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005). arXiv:gr-qc/0506013

  23. Galloway, G.J., Schoen, R.: A Generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571–576 (2006). arXiv:gr-qc/0509107

  24. Chrusciel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mem. Soc. Math. France 94, 1–103 (2003). arXiv:gr-qc/0301073

  25. Cantor M., Brill D.: The Laplacian on asymptotically flat manifolds and the specification of scalar curvature. Compositio Math. 43(3), 317–330 (1981)

    MATH  MathSciNet  Google Scholar 

  26. Bray, H.L., Lee, D.A.: On the Riemannian Penrose inequality in dimensions less than 8. Duke Math. J. 148(1), 81–106 (2009). arXiv:0705.1128

  27. Carter B.: Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331–333 (1971)

    Article  ADS  Google Scholar 

  28. Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, London-New York (1973)

    Book  MATH  Google Scholar 

  29. Riesz F., Nagy B.S.: Functional Analysis. Courier Dover Publications, New York (1990)

    MATH  Google Scholar 

  30. Reed M., Simon B.: Functional Analysis. Methods of Modern Mathematical Physics. Elsevier Science, Amsterdam (1981)

    Google Scholar 

  31. Seifert, M.D., Wald, R.M.: General variational principle for spherically symmetric perturbations in diffeomorphism covariant theories. Phys. Rev. D 75, 084029 (2007). arXiv:gr-qc/0612121

  32. Chandrasekhar S.: Dynamical instability of Gaseous masses approaching the Schwarzschild limit in general relativity. Phys. Rev. Lett. 12, 114–116 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Corvino J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214(1), 137–189 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. Iyer, V., Wald, R.M.: Some properties of Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D50, 846–864 (1994). arXiv:gr-qc/9403028v1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartik Prabhu.

Additional information

Communicated by P. T. Chrusciel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabhu, K., Wald, R.M. Black Hole Instabilities and Exponential Growth. Commun. Math. Phys. 340, 253–290 (2015). https://doi.org/10.1007/s00220-015-2446-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2446-1

Keywords

Navigation