Skip to main content
Log in

Arithmetic, Zeros, and Nodal Domains on the Sphere

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We obtain lower bounds for the number of nodal domains of Hecke eigenfunctions on the sphere. Assuming the generalized Lindelöf hypothesis we prove that the number of nodal domains of any Hecke eigenfunction grows with the eigenvalue of the Laplacian. By a very different method, we show unconditionally that the average number of nodal domains of degree l Hecke eigenfunctions grows significantly faster than the uniform growth obtained under Lindelöf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Berry M.V.: Regular and irregular semiclassical wavefunctions. J. Phys. A 10(12), 2083–2091 (1977)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Blum G., Gnutzmann S., Smilanksy U.: Nodal domains statistics: a criterion for quantum chaos. Phys. Rev. Lett. 88, 114101 (2002)

    Article  ADS  Google Scholar 

  3. Bogomolny E., Schmit C.: Percolation model for nodal domains of chaotic wave functions. Phys. Rev. Lett. 88, 114102 (2002)

    Article  ADS  Google Scholar 

  4. Böcherer S., Sarnak P., Schulze-Pillot R.: Arithmetic and equidistribution of measures on the sphere. Commun. Math. Phys. 242(1–2), 67–80 (2003)

    Article  MATH  ADS  Google Scholar 

  5. Bourgain J., Lindenstrauss E.: Entropy of quantum limits. Commun. Math. Phys. 233(1), 153–171 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Cheng S.Y.: Eigenfunctions and nodal sets. Comment. Math. Helv. 51(1), 43–55 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  7. Conrey J.B., Farmer D.W.: Mean values of L-functions and symmetry. Int. Math. Res. Notices 17, 883–908 (2000)

    Article  MathSciNet  Google Scholar 

  8. Courant, R., Hilbert, D.: Methods of mathematical physics. Interscience Publishers, Inc., New York, NY (1953)

  9. Deligne P.: La conjecture de Weil. I. Inst. Hautes Études Sci. Publ. Math. 43, 273–307 (1974)

    Article  MathSciNet  Google Scholar 

  10. Edelman A., Kostlan E.: How many zeros of a random polynomial are real?. Bull. Am. Math. Soc. (N.S.) 32(1), 1–37 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Eichler, M.: The basis problem for modular forms and the traces of the Hecke operators. In: Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Springer, Berlin, pp. 75–151. Lecture Notes in Math., vol. 320 (1973)

  12. Ghosh A., Reznikov A., Sarnak P.: Nodal domains of Maass forms I. Geom. Funct. Anal. 23(5), 1515–1568 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Iwaniec H., Sarnak P.: L norms of eigenfunctions of arithmetic surfaces. Ann. Math. (2) 141(2), 301–320 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jacquet H., Chen N.: Positivity of quadratic base change L-functions. Bull. Soc. Math. France 129(1), 33–90 (2001)

    MATH  MathSciNet  Google Scholar 

  15. Jung, J.: Quantitative quantum ergodicity and the nodal domains of Maass-Hecke cusp forms. Preprint, arXiv:1301.6211v2 [math.NT] (2014)

  16. Jung, J., Zelditch, S.: Number of nodal domains and singular points of eigenfunctions of negatively curved surfaces with an isometric involution. Preprint, arXiv:1310.2919 [math.SP] To appear in J. Differ. Geom. (2013)

  17. Kac M.: On the average number of real roots of a random algebraic equation. Bull. Am. Math. Soc. 49, 314–320 (1943)

    Article  MATH  Google Scholar 

  18. Katz N.M., Sarnak P.: Zeroes of zeta functions and symmetry. Bull. Am. Math. Soc. (N.S.) 36(1), 1–26 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lewy H.: On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere. Commun. Partial Differ. Equ. 2(12), 1233–1244 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  20. Martin, K., Whitehouse, D.: Central L-values and toric periods for GL(2). Int. Math. Res. Notices IMRN, 1, Art. ID rnn127, 141–191 (2009)

  21. Michel P., Venkatesh A.: The subconvexity problem for GL2. Publ. Math. Inst. Hautes Études Sci. 111, 171–271 (2010)

    Article  MathSciNet  Google Scholar 

  22. Milićević D.: Large values of eigenfunctions on arithmetic hyperbolic surfaces. Duke Math. J. 155(2), 365–401 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nastasescu, M.: The number of ovals of a random real plane curve. B.A. Thesis, Princeton University (2011)

  24. Nazarov F., Sodin M.: On the number of nodal domains of random spherical harmonics. Am. J. Math. 131(5), 1337–1357 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sarnak, P.: Arithmetic Quantum Chaos Lecture Notes. http://web.math.princeton.edu/sarnak/ (1993)

  26. Sarnak, P.: Letter to Andrei Reznikov. http://web.math.princeton.edu/sarnak/ (2008)

  27. Seeger A., Sogge C.: Bounds for eigenfunctions of differential operators. Indiana Univ. Math. J. 38, 669–682 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  28. Soundararajan K.: Extreme values of zeta and L-functions. Math. Ann. 342(2), 467–486 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Szegö, G.: Orthogonal Polynomials. Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc., New York (1939)

  30. Tate, J.: Number theoretic background. In: Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII. Amer. Math. Soc., Providence, RI, pp. 3–26 (1979)

  31. VanderKam J.M.: L norms and quantum ergodicity on the sphere. Int. Math. Res. Notices 7, 329–347 (1997)

    Article  MathSciNet  Google Scholar 

  32. Waldspurger J.-L.: Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie. Compositio Math. 54(2), 173–242 (1985)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Magee.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magee, M. Arithmetic, Zeros, and Nodal Domains on the Sphere. Commun. Math. Phys. 338, 919–951 (2015). https://doi.org/10.1007/s00220-015-2391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2391-z

Keywords

Navigation