Skip to main content
Log in

On the Hausdorff Dimension of the Spectrum of the Thue–Morse Hamiltonian

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the Hausdorff dimension of the spectrum of the Thue–Morse Hamiltonian has a common positive lower bound for all coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila A., Krikorian R.: Reducibility or nonuniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. Math. 164(3), 911–940 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Axel F., Allouche J.P., Kleman M., Mendes-France M., Peyriere J.: Vibrational modes in a one-dimensional “quasi alloy”, the Morse case. J. de Phys. C3 47, 181–187 (1986)

    Article  MATH  Google Scholar 

  3. Axel F., Peyrière J.: Extended states in a chain with controlled disorder. C. R. Acad. Sci. Paris Sr. II Mc. Phys. Chim. Sci. Univers Sci. Terre. 306, 179–182 (1988)

    MATH  Google Scholar 

  4. Axel F., Peyrière J.: Spectrum and extended states in a harmonic chain with controlled disorder: Effects of the Thue–Morse symmetry. J. Stat. Phys. 57, 1013–1047 (1989)

    Article  ADS  MATH  Google Scholar 

  5. Bellissard, J.: Spectral properties of Schröinger operator with a Thue–Morse potential. In: Number Theory and Physics (Les Houches, 1989), Springer Proc. Phys. 47, pp. 140-150. Springer, Berlin (1990)

  6. Bellissard J., Bovier A., Ghez J.: Spectral properties of a tight binding Hamiltonian with period doubling potential. Commun. Math. Phys. 135(2), 379–399 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Bellissard J., Bovier A., Ghez J.: Discrete Schrödinger Operators with Potentials Generated by Substitutions. Differential Equations with Applications to Mathematical Physics, vol. 1323, Math. Sci. Engrg., 192. Academic Press, Boston (1993)

  8. Bovier A., Ghez J.M.: Spectral properties of one-dimensional Schröinger operators with potentials generated by substitutions. Commun. Math. Phys. 158, 45–66 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Cantat S.: Bers and Hénon, Painlevé and Schrödinger. Duke Math. J. 149, 411–460 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carmona R., Lacroix J.: Spectral Theory of Random Schrödinger operators, Probability and its Applications. Birkhäuser Boston Inc., Boston (1990)

    Book  Google Scholar 

  11. Casdagli M.: Symbolic dynamics for the renormalization map of a quasiperiodic Schrdinger equation. Commun. Math. Phys. 107(2), 295–318 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Damanik, D., Embree, M., Gorodetski, A.: Spectral Properties of Schrdinger Operators Arising in the Study of Quasicrystals. arXiv:1210.5753

  13. Damanik D., Embree M., Gorodetski A., Tcheremchantsev S.: The fractal dimension of the spectrum of the Fibonacci Hamiltonian. Commun. Math. Phys. 280, 499–516 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Damanik D., Gorodetski A.: Hyperbolicity of the trace map for the weakly coupled Fibonacci Hamiltonian. Nonlinearity 22, 123–143 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Damanik D., Gorodetski A.: Spectral and quantum dynamical properties of the weakly coupled Fibonacci Hamiltonian. Commun. Math. Phys. 305, 221–277 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Damanik, D., Gorodetski, A., Yessen, W.: The Fibonacci Hamiltonian. arXiv:1403.7823.

  17. Damanik D., Tcheremchantsev S.: Power-law bounds on transfer matrices and quantum dynamics in one dimension. Commun. Math. Phys. 236, 513–534 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Falconer K.: Fractal geometry Mathematical Foundations and Applications. John Wiley & Sons Ltd., Chichester (1990)

    MATH  Google Scholar 

  19. Fogg, N.: Substitutions in dynamics, arithmetics and combinatorics. In: Berthé, V., Ferenczi, S., Mauduit, C., Siegel, A. (eds.) Lecture Notes in Mathematics, 1794. Springer-Verlag, Berlin (2002)

  20. Girand A.: Dynamical green functions and discrete Schrödinger operators with potentials generated by primitive invertible substitution. Nonlinearity 27, 527–543 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Jitomirskaya S., Krasovsky I.: Continuity of the measure of the spectrum for discrete quasiperiodic operators. Math. Res. Lett. 9(4), 413–421 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jitomirskaya S., Last Y.: Power-law subordinacy and singular spectra. II. Line operators. Commun. Math. Phys. 211, 643–658 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Kohmoto M., Kadanoff L., Tang C.: Localization problem in one dimension: mapping and escape. Phys. Rev. Lett. 50(23), 1870–1872 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  24. Last Y.: Zero measure spectrum for the almost Mathieu operator. Commun. Math. Phys. 164(2), 421–432 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Last Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142(2), 406–445 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lenz D.: Singular spectrum of Lebesgue measure zero for one-dimensional quasicrystals. Commun. Math. Phys. 227, 119–130 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Liu Q.H., Qu Y.H., Wen Z.Y.: The fractal dimensions of the spectrum of Sturm Hamiltonian. Adv. Math. 257, 285–336 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu Q.H., Tan B., Wen Z.X., Wu J.: Measure zero spectrum of a class of Schrödinger operators. J. Stat. Phys. 106, 681–691 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu Q.H., Wen Z.Y.: Hausdorff dimension of spectrum of one-dimensional Schrödinger operator with Sturmian potentials. Potential Anal. 20, 33–59 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Luck J.M.: Cantor spectra and scaling of gap widths in deterministic aperiodic systems Phys. Rev. B 39, 5834–5849 (1989)

    Article  Google Scholar 

  31. Mei M.: Spectra of discrete Schrdinger operators with primitive invertible substitution potentials. J. Math. Phys. 55, 082701 (2014)

    Article  ADS  Google Scholar 

  32. Merlin R., Bajema K., Nagle J., Ploog K.: Raman scattering by acoustic phonons and structural properties of Fibonacci, Thue–Morse and random superlattices. J. Phys. Colloques 48, C5-503–C5-506 (1987)

    Article  Google Scholar 

  33. Ostlund S., Pandit R., Rand D., Schellnhuber H., Siggia D.: One-dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50(23), 1873–1876 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  34. Raymond, L.: A constructive gap labelling for the discrete schrödinger operater on a quasiperiodic chain (1997)

  35. Reed M., Simon B.: Methods of Modern Mathematical Physics, I Functional Analysis, 2nd edn. Academic Press, New York (1980)

    MATH  Google Scholar 

  36. Riklund R., Severin M., Liu Y.-Y.: The Thue–Morse aperiodic crystal, a link between the Fibonacci quasicrystal and the periodic crystal. Int. J. Mod. Phys. B1, 121–132 (1987)

    Article  ADS  Google Scholar 

  37. Sütö A.: The spectrum of a quasiperiodic Schrödinger operator. Commun. Math. Phys. 111(3), 409–415 (1987)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Qu.

Additional information

Communicated by L. Erdös

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Qu, Y. On the Hausdorff Dimension of the Spectrum of the Thue–Morse Hamiltonian. Commun. Math. Phys. 338, 867–891 (2015). https://doi.org/10.1007/s00220-015-2377-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2377-x

Keywords

Navigation