Skip to main content
Log in

Landauer–Büttiker and Thouless Conductance

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In the independent electron approximation, the average (energy/charge/entropy) current flowing through a finite sample \({\mathcal{S}}\) connected to two electronic reservoirs can be computed by scattering theoretic arguments which lead to the famous Landauer–Büttiker formula. Another well known formula has been proposed by Thouless on the basis of a scaling argument. The Thouless formula relates the conductance of the sample to the width of the spectral bands of the infinite crystal obtained by periodic juxtaposition of \({\mathcal{S}}\). In this spirit, we define Landauer–Büttiker crystalline currents by extending the Landauer–Büttiker formula to a setup where the sample \({\mathcal{S}}\) is replaced by a periodic structure whose unit cell is \({\mathcal{S}}\). We argue that these crystalline currents are closely related to the Thouless currents. For example, the crystalline heat current is bounded above by the Thouless heat current, and this bound saturates iff the coupling between the reservoirs and the sample is reflectionless. Our analysis leads to a rigorous derivation of the Thouless formula from the first principles of quantum statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahams E., Anderson P.W., Licciardello D.C., Ramakrishnan T.V.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979)

    Article  ADS  Google Scholar 

  2. Aschbacher W., Jakšić V., Pautrat Y., Pillet C.-A.: Transport properties of quasi-free fermions. J. Math. Phys. 48, 032101 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Ben Sâad, R., Pillet, C.-A.: A geometric approach to the Landauer–Büttiker formula. J. Math. Phys. 55, 075202 (2014)

  4. Busch, P.: The time-energy uncertainty relation. In: Muga J.G., Sala Mayato R., Egusquiza Í.L. (eds.) Time in Quantum Mechanics, 2nd edn. Springer, Berlin (2008)

  5. Bruneau, L., Jakšić, V., Pillet, C.A.: Landauer–Büttiker formula and Schrödinger conjecture. Commun. Math. Phys. 319, 501–513 (2013)

  6. Cornean, H.D., Jensen, A., Moldoveanu, V.: A rigorous proof of the Landauer–Büttiker formula. J. Math. Phys. 46, 042106 (2005)

  7. Edwards J.T., Thouless D.J.: Numerical studies of localization in disordered systems. J. Phys. C: Solid State Phys. 5, 807–820 (1972)

    Article  ADS  Google Scholar 

  8. Fröhlich J., Pfeifer P.: Generalized time-energy uncertainty relations and bounds on lifetimes of resonances. Rev. Mod. Phys. 67, 759–779 (1995)

    Article  ADS  Google Scholar 

  9. Grech P., Jakšić V., Westrich M.: The spectral structure of the electronic black box Hamiltonian. Lett. Math. Phys. 103, 1135–1147 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Gesztesy F., Nowell R., Potz W.: One-dimensional scattering theory for quantum systems with nontrivial spatial asymptotics. Differ. Integr. Equ. 10, 521–546 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Gesztesy, F., Simon, B.: Inverse spectral analysis with partial information on the potential I. The case of an a.c. component in the spectrum. Helv. Phys. Acta 70, 66–71 (1997)

  12. Jakšić, V.: Topics in spectral theory. In: Open Quantum Systems I. The Hamiltonian Approach. Lecture Notes in Mathematics, vol. 1880, pp. 235–312. Springer (2006)

  13. Jakšić, V., Landon, B., Panati, A.: A note on reflectionless Jacobi matrices. Commun. Math. Phys. 332, 827–838 (2014)

  14. Jakšić, V., Landon, B., Pillet, C.-A.: Entropic fluctuations in XY chains and reflectionless Jacobi matrices. Ann. Henri Poincaré 14, 1775–1800 (2013)

  15. Last, Y.: Conductance and spectral properties. Ph.D. Thesis, Technion (1994)

  16. Nenciu, G.: Independent electrons model for open quantum systems: Landauer–Büttiker formula and strict positivity of the entropy production. J. Math. Phys. 48, 033302 (2007)

  17. Mandelstam L., Tamm I.: The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. (Moscow) 9, 249–254 (1945)

    MathSciNet  Google Scholar 

  18. Reed M., Simon B.: Methods of Modern Mathematical Physics IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  19. Simon, B.: Szegö’s Theorem and Its Descendants. Spectral Theory for L 2 Perturbations of Orthogonal Polynomials. M.B. Porter Lectures. Princeton University Press, Princeton (2011)

  20. Thouless D.J.: Maximum metallic resistance in thin wires. Phys. Rev. Lett. 39, 1167–1169 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jakšić.

Additional information

Communicated by H. Spohn

Dedicated to the memory of Markus Büttiker

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruneau, L., Jakšić, V., Last, Y. et al. Landauer–Büttiker and Thouless Conductance. Commun. Math. Phys. 338, 347–366 (2015). https://doi.org/10.1007/s00220-015-2321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-015-2321-0

Keywords

Navigation