Skip to main content
Log in

SLE and Virasoro Representations: Fusion

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We continue the study of null-vector equations in relation with partition functions of (systems of) Schramm–Loewner Evolutions (SLEs) by considering the question of fusion. Starting from n commuting SLEs seeded at distinct points, the partition function satisfies n null-vector equations (at level 2). We show how to obtain higher level null-vector equations by coalescing the seeds one by one. As an example, we extend Schramm’s formula (for the position of a marked bulk point relatively to a chordal SLE trace) to an arbitrary number of SLE strands.

The argument combines input from representation theory—the study of Verma modules for the Virasoro algebra—with regularity estimates, themselves based on hypoellipticity and stochastic flow arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, V.I.: Ordinary Differential Equations. Universitext. Springer, Berlin (2006). Translated from the Russian by Roger Cooke, Second printing of the 1992 edition

  2. Bauer M., Bernard D.: \({{\rm SLE}_{\kappa}}\) growth processes and conformal field theories. Phys. Lett. B 543(1–2), 135–138 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bauer M., Bernard D., Kytölä K.: Multiple Schramm–Loewner evolutions and statistical mechanics martingales. J. Stat. Phys. 120(5–6), 1125–1163 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bauer M.,Di Francesco P., Itzykson C., Zuber J.-B.: Singular vectors of the Virasoro algebra. Phys. Lett. B 260(3–4), 323–326 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241(2), 333–380 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Beliaev D., Johansson Viklund F.: Some remarks on SLE bubbles and Schramm’s two-point observable. Commun. Math. Phys. 320(2), 379–394 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Benoit L., Saint-Aubin Y.: Degenerate conformal field theories and explicit expressions for some null vectors. Phys. Lett. B 215(3), 517–522 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Bony, J.-M.: Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19(fasc. 1), 277–304, xii (1969)

  9. Cardy J.: Corrigendum: “Stochastic Loewner evolution and Dyson’s circular ensembles” [J. Phys. A 36(24), L379–L386 (2003)]. J. Phys. A 36(49), 12343 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cardy J.: Stochastic Loewner evolution and Dyson’s circular ensembles. J. Phys. A 36(24), L379–L386 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Cardy J.L.: Boundary conditions, fusion rules and the Verlinde formula. Nucl. Phys. B 324(3), 581–596 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  12. Chelkak D., Smirnov S.: Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math. 189(3), 515–580 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Di Francesco P., Mathieu P., Sénéchal D.: Conformal Field Theory. Graduate Texts in Contemporary Physics. Springer, New York (1997)

    Google Scholar 

  14. Dubédat J.: Euler integrals for commuting SLEs. J. Stat. Phys. 123(6), 1183–1218 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Dubédat J.: Commutation relations for SLE. Commun. Pure Appl. Math. 60(12), 1792–1847 (2007)

    Article  MATH  Google Scholar 

  16. Dubédat J.: Duality of Schramm–Loewner evolutions. Ann. Sci. Éc. Norm. Supér. (4) 42(5), 697–724 (2009)

    MATH  Google Scholar 

  17. Dubédat, J.: SLE and Virasoro representations: localization. Commun. Math. Phys. (2015). doi:10.1007/s00220-014-2282-8

  18. Feĭgin, B.L., Fuchs, D.B.: Verma modules over the Virasoro algebra. In: Topology (Leningrad, 1982), volume 1060 of Lecture Notes in Math. Springer, Berlin, pp. 230–245 (1984)

  19. Fomin, S.: Loop-erased walks and total positivity. Trans. Am. Math. Soc. 353(9), 3563–3583 (electronic) (2001). doi:10.1090/S0002-9947-01-02824-0

  20. Friedrich R., Kalkkinen J.: On conformal field theory and stochastic Loewner evolution. Nucl. Phys. B 687(3), 279–302 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Friedrich, R.M.: On connections of conformal field theory and stochastic Loewner evolution. preprint, arXiv:math-ph/0410029 (2004)

  22. Gamsa, A., Cardy, J.: The scaling limit of two cluster boundaries in critical lattice models. J. Stat. Mech. Theory Exp. (12): P12009, 26 (electronic) (2005)

  23. Goodman R.W.: Nilpotent Lie groups: structure and applications to analysis. Lecture Notes in Mathematics, vol. 562. Springer, Berlin (1976)

    Google Scholar 

  24. Grimmett G.: The random-cluster model, volume 333 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (2006)

    Google Scholar 

  25. Hongler C., Kytölä K.: Ising interfaces and free boundary conditions. J. Am. Math. Soc. 26(4), 1107–1189 (2013)

    Article  MATH  Google Scholar 

  26. Hörmander L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ince E.L.: Ordinary Differential Equations. Dover Publications, New York (1944)

    MATH  Google Scholar 

  28. Iohara K., Koga Y.: Representation Theory of the Virasoro algebra. Springer Monographs in Mathematics. Springer-Verlag London Ltd., London (2011)

    Book  Google Scholar 

  29. Kac V.G., Raina A.K.: Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, volume 2 of Advanced Series in Mathematical Physics. World Scientific Publishing Co. Inc., Teaneck (1987)

    Google Scholar 

  30. Kontsevich, M.: SLE, CFT, and phase boundaries. Arbeitstagung 2003, preprint, MPI 2003 (60) (2003)

  31. Kontsevich M.L.: The Virasoro algebra and Teichmüller spaces. Funct. Anal. Appl. 21(2), 156–157 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kozdron, M.J., Lawler, G.F.: Estimates of random walk exit probabilities and application to loop-erased random walk. Electron. J. Probab. 10, 1442–1467 (electronic) (2005)

  33. Lawler, G., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16(4), 917–955 (electronic) (2003)

  34. Lawler G.F., Schramm O., Werner W.: Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab. 32(1B), 939–995 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Revuz D., Yor M.: Continuous Martingales and Brownian Motion, volume 293 of Grundlehren der Mathematischen Wissenschaften, 3rd edn. Springer, Berlin (1999)

    Book  Google Scholar 

  36. Rothschild L.P., Stein E.M.: Hypoelliptic differential operators and nilpotent groups. Acta Math. 137(3–4), 247–320 (1976)

    Article  MathSciNet  Google Scholar 

  37. Schramm O.: Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math. 118, 221–288 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Schramm, O.: A percolation formula. Electron. Commun. Probab. 6, 115–120 (electronic) (2001)

  39. Smirnov, S.: Towards conformal invariance of 2D lattice models. In: International Congress of Mathematicians, vol. II, pp. 1421–1451. Eur. Math. Soc., Zürich (2006)

  40. Stroock, D.W.: Partial Differential Equations for Probabilists, volume 112 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge. Paperback edition of the 2008 original (2012)

  41. Vostrikova L.: On regularity properties of Bessel flow. Stochastics 81(5), 431–453 (2009)

    MATH  MathSciNet  Google Scholar 

  42. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the 28th annual ACM symposium on the theory of computing (Philadelphia, PA, 1996), pp. 296–303, New York, ACM (1996)

  43. Yoshida, M.: Fuchsian differential equations. Aspects of Mathematics, E11. Friedr. Vieweg & Sohn, Braunschweig, 1987. With special emphasis on the Gauss–Schwarz theory

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Dubédat.

Additional information

Communicated by M. Salmhofer

J. Dubédat was Partially supported by NSF Grant DMS-1005749 and the Alfred P. Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubédat, J. SLE and Virasoro Representations: Fusion. Commun. Math. Phys. 336, 761–809 (2015). https://doi.org/10.1007/s00220-014-2283-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2283-7

Keywords

Navigation