Skip to main content
Log in

Thomas–Fermi Approximation for Coexisting Two Component Bose–Einstein Condensates and Nonexistence of Vortices for Small Rotation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study minimizers of a Gross–Pitaevskii energy describing a two- component Bose–Einstein condensate confined in a radially symmetric harmonic trap and set into rotation. We consider the case of coexistence of the components in the Thomas–Fermi regime, where a small parameter \({\varepsilon}\) conveys a singular perturbation. The minimizer of the energy without rotation is determined as the positive solution of a system of coupled PDEs, for which we show uniqueness. The limiting problem for \({\varepsilon =0}\) has degenerate and irregular behavior at specific radii, where the gradient blows up. By means of a perturbation argument, we obtain precise estimates for the convergence of the minimizer to this limiting profile, as \({\varepsilon}\) tends to 0. For low rotation, based on these estimates, we can show that the ground states remain real valued and do not have vortices, even in the region of small density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftalion, A.: Vortices in Bose–Einstein Condensates. Progress in Nonlinear Differential Equations and their Applications, vol. 67. Birhkaüser, Boston (2006)

  2. Aftalion A., Alama S., Bronsard L.: Giant vortex and the breakdown of strong pinning in a rotating Bose–Einstein condensate. Arch. Ration. Mech. Anal. 178, 247–286 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aftalion A., Jerrard R.L., Royo-Letelier J.: Non-existence of vortices in the small density region of a condensate. J. Funct. Anal. 260, 2387–2406 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aftalion A., Mason P.: Classification of the ground states and topological defects in a rotating two-component Bose–Einstein condensate. Phys. Rev. A 84, 033611 (2011)

    Article  ADS  Google Scholar 

  5. Aftalion A., Mason P., Wei J.: Vortex-peak interaction and lattice shape in rotating two-component Bose–Einstein condensates. Phys. Rev. A 85, 033614 (2012)

    Article  ADS  Google Scholar 

  6. Aftalion, A., Royo-Letelier, J.: A minimal interface problem arising from a two component Bose–Einstein condensate via Gamma-convergence. (to appear in Calc.Var. preprint) (2013). arXiv:1304.6650

  7. Agmon S.: Lectures on Elliptic Boundary Value Problems. Van Nostrand, Princeton (1965)

    MATH  Google Scholar 

  8. Alama S., Bronsard L., Mironescu P.: On compound vortices in a two-component Ginzburg–Landau functional. Indiana Univ. Math. J. 61, 1861–1909 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Béthuel F., Brezis H., Hélein F.: Asymptotics for the minimization of a Ginzburg–Landau functional. Calc. Var. Part. Differ. Equ. 1, 123–148 (1993)

    Article  MATH  Google Scholar 

  10. Béthuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices, PNLDE, vol. 13. Birkhäuser, Boston (1994)

  11. Berestycki H., Caffarelli L., Nirenberg L.: Further qualitative properties for elliptic equations in unbounded domains. Ann. Scuola Norm. Sup. Pisa 25, 69–94 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Berestycki H., Lin T.-C., Wei J., Zhao C.: On phase-separation model: asymptotics and qualitative properties. Arch. Ration. Mech. Anal. 208, 163–200 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Berestycki H., Terracini S., Wang K., Wei J.: On entire solutions of an elliptic system modeling phase separations. Adv. Math. 243, 102–126 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  14. Brezis H.: Semilinear equations in \({\mathbb{R}^n}\)without conditions at infinity. Appl. Math. Optim. 12, 271–282 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brezis H., Oswald L.: Remarks on sublinear elliptic equations. Nonlinear Anal. 10, 55–64 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Caffarelli L.A., Lin F.-H.: Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Am. Math. Soc. 21, 847–862 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dancer E.N., Yan S.: On the superlinear Lazer–McKenna conjecture. J. Differ. Equ. 210, 317–351 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Dancer E.N., Wang K., Zhang Z.: The limit equation for the Gross–Pitaevskii equations and S. Terracini’s conjecture. J. Funct. Anal. 262, 1087–1131 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Fokas, A.S., Its, A.R., Kapaev, A.A., Novokshenov, V.Y.: Painlevé Transcendents, The Riemann–Hilbert Approach, Mathematical Surveys and Monographs, Vol. 128. AMS, Providence (2006)

  20. Gallo, C.: The ground state of two coupled Gross-Pitaevskii equations in the Thomas–Fermi limit. (preprint) (2014). arXiv:1407.4974

  21. Gallo C., Pelinovsky D.: On the Thomas–Fermi ground state in a harmonic potential. Asymptot. Anal. 73, 53–96 (2011)

    MATH  MathSciNet  Google Scholar 

  22. Gidas B., Spruck J.: A priori bounds for positive solutions of nonlinear elliptic equations. Commun. Part. Differ. Equ. 6, 883–901 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hastings S.P., McLeod J.B.: A boundary value problem associated with the second Painlevé transcendent and the Korteweg–de Vries equation. Arch. Ration. Mech. Anal. 73, 31–51 (1981)

    Article  MathSciNet  Google Scholar 

  24. Ignat R., Millot V.: The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate. J. Funct. Anal. 233, 260–306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jerrard R.L.: Local minimizers with vortex filaments for a Gross-Pitaevsky functional. ESAIM Control Optim. Calc. Var. 13, 35–71 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Karali G.D., Sourdis C.: Radial and bifurcating non-radial solutions for a singular perturbation problem in the case of exchange of stabilities. Ann. I. H. Poincaré-AN 29, 131–170 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. Karali, G.D., Sourdis, C.: The ground state of a Gross-Pitaevskii energy with general potential in the Thomas–Fermi limit (to appear in Arch. Ration. Mech. Anal) (2014). arXiv:1205.5997

  28. Lassoued L., Mironescu P.: Ginzburg–Landau type energy with discontinuous constraint. J. Anal. Math. 77, 1–26 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  29. Li G., Yang J., Yan S.: Solutions with boundary layer and positive peak for an elliptic Dirichlet problem. Proc. R. Soc. Edinb. 134, 515–536 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Noris B., Tavares H., Terracini S., Verzini G.: Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition. Commun. Pure Appl. Math. 3 63, 267–302 (2010)

    MATH  MathSciNet  Google Scholar 

  31. Pacard, F., Rivière, T.: Linear and Nonlinear Aspects of Vortices. The Ginzburg–Landau Model, PNLDE, vol. 39. Birkhaüser, Boston (2000)

  32. Strauss W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandine Aftalion.

Additional information

Communicated by L.Caffarelli

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aftalion, A., Noris, B. & Sourdis, C. Thomas–Fermi Approximation for Coexisting Two Component Bose–Einstein Condensates and Nonexistence of Vortices for Small Rotation. Commun. Math. Phys. 336, 509–579 (2015). https://doi.org/10.1007/s00220-014-2281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2281-9

Keywords

Navigation