Skip to main content
Log in

Large Deviations and Gallavotti–Cohen Principle for Dissipative PDEs with Rough Noise

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a class of dissipative PDEs perturbed by an unbounded kick force. Under some natural assumptions, the restrictions of solutions to integer times form a homogeneous Markov process. Assuming that the noise is rough with respect to the space variables and has a non-degenerate law, we prove that the system in question satisfies a large deviation principle (LDP) in τ-topology. Under some additional hypotheses, we establish a Gallavotti–Cohen type symmetry for the rate function of an entropy production functional and the strict positivity and finiteness of the mean entropy production rate in the stationary regime. The latter result is applicable to PDEs with strong nonlinear dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bricmont J., Kupiainen A., Lefevere R.: Ergodicity of the 2d Navier–Stokes equations with random forcing. Commun. Math. Phys. 224(1), 65–81 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Baiesi, M., Maes, C.: Enstrophy dissipation in two-dimensional turbulence. Phys. Rev. E (3) 72(5), 056314, 7 (2005)

  3. Bogachev V.I.: Gaussian Measures, Mathematical Surveys and Monographs, vol. 62. American Mathematical Society, Providence (1998)

    Google Scholar 

  4. Boritchev A.: Estimates for solutions of a low-viscosity kick-forced generalized Burgers equation. Proc. R. Soc. Edinb. Sect. A 143(2), 253–268 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babin A.V., Vishik M.I.: Attractors of Evolution Equations. North-Holland Publishing, Amsterdam (1992)

    MATH  Google Scholar 

  6. Cazenave T.: Semilinear Schrödinger Equations. New York University Courant Institute of Mathematical Sciences, New York (2003)

    MATH  Google Scholar 

  7. Doob J.L.: Asymptotic properties of Markoff transition probabilities. Trans. Am. Math. Soc. 63, 393–421 (1948)

    MATH  MathSciNet  Google Scholar 

  8. Deuschel J.-D., Stroock D.W.: Large Deviations. Academic Press, Boston (1989)

    MATH  Google Scholar 

  9. Da Prato G., Zabczyk J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  10. Dembo A., Zeitouni O.: Large Deviations Techniques and Applications. Springer, Berlin (2000)

    Google Scholar 

  11. Eckmann J.-P., Hairer M.: Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Commun. Math. Phys. 212(1), 105–164 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Entropy production in nonlinear, thermally driven Hamiltonian systems. J. Stat. Phys. 95(1–2), 305–331 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Eckmann J.-P., Pillet C.-A., Rey-Bellet L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201(3), 657–697 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Evans D.J., Searles D.J.: Equilibrium microstates which generate second law violating steady states. Phys. Rev. E 50, 1645–1648 (1994)

    Article  ADS  Google Scholar 

  15. Gaspard P.: Time-reversed dynamical entropy and irreversibility in Markovian random processes. J. Stat. Phys. 117(3–4), 599–615 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Gallavotti G., Cohen E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80(5–6), 931–970 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Gourcy M.: A large deviation principle for 2d stochastic Navier– Stokes equation. Stoch. Process. Appl. 117(7), 904–927 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gourcy M.: Large deviation principle of occupation measure for a stochastic Burgers equation. Ann. Inst. H. Poincaré Probab. Stat. 43(4), 375–408 (2007)

    Article  MathSciNet  Google Scholar 

  19. Gīhman Ĭ. Ī., Skorohod A.V.: The Theory of Stochastic Processes I. Springer, Berlin (1980)

    MATH  Google Scholar 

  20. Ginibre J., Velo G.: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods. Phys. D 95(3–4), 191–228 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jakšić, V., Nersesyan, V., Pillet, C.-A., Shirikyan, A.: Large deviations from a stationary measure for a class of dissipative PDE’s with random kicks (2012, preprint) arXiv:1212.0527

  22. Jakšić V., Pillet C.-A., Rey-Bellet L.: Entropic fluctuations in statistical mechanics: I. Classical dynamical systems. Nonlinearity 24(3), 699–763 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Kružkov S.N.: The Cauchy problem for certain classes of quasilinear parabolic equations. Mat. Zametki 6, 295–300 (1969)

    MathSciNet  Google Scholar 

  24. Kuksin S., Shirikyan A.: Mathematics of Two-Dimensional Turbulence. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  25. Kurchan J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31(16), 3719–3729 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Lecomte V., Appert-Rolland C., van Wijland F.: Thermodynamic formalism for systems with Markov dynamics. J. Stat. Phys. 127(1), 51–106 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Lebowitz J.L., Spohn H.: A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95(1–2), 333–365 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Maes C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95(1–2), 367–392 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Maes, C.: On the origin and the use of fluctuation relations for the entropy. Poincaré Seminar 2003, Prog. Math. Phys., vol. 38. Birkhäuser, Basel, pp. 145–191 (2004)

  30. Métivier G.: Valeurs propres d’opérateurs définis par la restriction de systèmes variationnels à des sous-espaces. J. Math. Pures Appl. (9) 57(2), 133–156 (1978)

    MATH  MathSciNet  Google Scholar 

  31. Maes C., Netočný K.: Time-reversal and entropy. J. Stat. Phys. 110(1–2), 269–310 (2003)

    Article  MATH  Google Scholar 

  32. Maes, C., Redig, F., Verschuere, M.: From global to local fluctuation theorems. Mosc. Math. J. 1(3), 421–438, 471–472 (2001)

  33. Meyn S.P., Tweedie R.L.: Markov Chains and Stochastic Stability. Springer, London (1993)

    Book  MATH  Google Scholar 

  34. Novikov, D.: Hahn decomposition and Radon–Nikodym theorem with a parameter (2005). arXiv:math/0501215

  35. Rondoni L., Mejía-Monasterio C.: Fluctuations in nonequilibrium statistical mechanics: models, mathematical theory, physical mechanisms. Nonlinearity 20(10), R1–R37 (2007)

    Article  ADS  MATH  Google Scholar 

  36. Rey-Bellet L., Thomas L.E.: Fluctuations of the entropy production in anharmonic chains. Ann. Henri Poincaré 3(3), 483–502 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Ruelle D.: Entropy production in nonequilibrium statistical mechanics. Commun. Math. Phys. 189(2), 365–371 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Ruelle D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanic. J. Stat. Phys. 95(1–2), 393–468 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Taylor, M.E.: Partial Differential Equations. I–III. Springer, New York (1996–1997)

  40. Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York (1988)

    Book  MATH  Google Scholar 

  41. Weissler F.B.: Local existence and nonexistence for semilinear parabolic equations in L p. Indiana Univ. Math. J. 29(1), 79–102 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wu L.: Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems. Stoch. Process. Appl. 91(2), 205–238 (2001)

    Article  MATH  Google Scholar 

  43. Yaglom A.M.: The ergodic principle for Markov processes with stationary distributions. Doklady Akad. Nauk SSSR (N.S.) 56, 347–349 (1947)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jakšić.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakšić, V., Nersesyan, V., Pillet, CA. et al. Large Deviations and Gallavotti–Cohen Principle for Dissipative PDEs with Rough Noise. Commun. Math. Phys. 336, 131–170 (2015). https://doi.org/10.1007/s00220-014-2279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2279-3

Keywords

Navigation