Skip to main content
Log in

A Combinatorial Approach to Nonlocality and Contextuality

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

So far, most of the literature on (quantum) contextuality and the Kochen–Specker theorem seems either to concern particular examples of contextuality, or be considered as quantum logic. Here, we develop a general formalism for contextuality scenarios based on the combinatorics of hypergraphs, which significantly refines a similar recent approach by Cabello, Severini and Winter (CSW). In contrast to CSW, we explicitly include the normalization of probabilities, which gives us a much finer control over the various sets of probabilistic models like classical, quantum and generalized probabilistic. In particular, our framework specializes to (quantum) nonlocality in the case of Bell scenarios, which arise very naturally from a certain product of contextuality scenarios due to Foulis and Randall. In the spirit of CSW, we find close relationships to several graph invariants. The recently proposed Local Orthogonality principle turns out to be a special case of a general principle for contextuality scenarios related to the Shannon capacity of graphs. Our results imply that it is strictly dominated by a low level of the Navascués–Pironio–Acín hierarchy of semidefinite programs, which we also apply to contextuality scenarios.

We derive a wealth of results in our framework, many of these relating to quantum and supraquantum contextuality and nonlocality, and state numerous open problems. For example, we show that the set of quantum models on a contextuality scenario can in general not be characterized in terms of a graph invariant.

In terms of graph theory, our main result is this: there exist two graphs \({G_1}\) and \({G_2}\) with the properties

$$\begin{array}{ll}\qquad \qquad \alpha(G_1) \; = \; \Theta(G_1), \qquad \qquad \alpha(G_2) \,= \; \vartheta(G_2), \\ \Theta(G_1\boxtimes G_2) \, > \; \Theta(G_1) \cdot \Theta(G_2),\quad \Theta(G_1 + G_2) \, > \Theta(G_1) + \Theta(G_2).\end{array}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramsky S., Brandenburger A.: The sheaf-theoretic structure of non-locality and contextuality. N. J. Phys. 13(11), 113036 (2011)

    Article  Google Scholar 

  2. Abramsky, S., Mansfield, S., Barbosa, R.S.: The cohomology of non-locality and contextuality, In: Proceedings 8th International Workshop on Quantum Physics and Logic (Nijmegen, 2011) (2011)

  3. Alon N.: The Shannon capacity of a union. Combinatorica 18(3), 301–310 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alon, N., Lubetzky, E.: The Shannon capacity of a graph and the independence numbers of its powers. IEEE Trans. Inf. Theory 52(5), (2006)

  5. Amaral B., Cunha M.T., Adán C.: The exclusivity principle forbids sets of correlations larger than the quantum set. Phys. Rev. A 89, 030101 (2014)

    Article  ADS  Google Scholar 

  6. Anderson I.: Combinatorics of Finite Sets. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  7. Anjos M.F.: On semidefinite programming relaxations for the satisfiability problem. Math. Methods Oper. Res. 60(3), 349–367 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Araújo M., Quintino M.T., Budroni C., Cunha M.T., Cabello A.: All noncontextuality inequalities for the n-cycle scenario. Phys. Rev. A 88, 022118 (2013)

    Article  ADS  Google Scholar 

  9. Avis D., Imai H., Ito T.: On the relationship between convex bodies related to correlation experiments with dichotomic observables. J. Phys. A 39, 11283 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bachoc C., Pécher A., Thiéry A.: On the theta number of powers of cycle graphs. Combinatorica 33(3), 297–317 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Barnum, H., Fuchs, C.A., Renes, J.M., Wilce, A.: Influence-free states on compound quantum systems (2005). arXiv:quant-ph/0507108

  12. Barrett J.: Information processing in generalized probabilistic theories. Phys. Rev. A 75(3), 032304 (2007)

    Article  ADS  Google Scholar 

  13. Barrett J., Leifer M.: The de Finetti theorem for test spaces. N. J. Phys. 11(3), 033024 (2009)

    Article  MathSciNet  Google Scholar 

  14. Barrett J., Pironio S.: Popescu-rohrlich correlations as a unit of nonlocality. Phys. Rev. Lett. 95, 140401 (2005)

    Article  ADS  Google Scholar 

  15. Bell J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  16. Berge, C.: Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Z. Martin- Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10(114) (1961)

  17. Berge C.: Motivations and history of some of my conjectures. Discrete Math. 165–166, 61–70 (1997)

    Article  MathSciNet  Google Scholar 

  18. Brouwer A.E., Haemers W.: Spectra of Graphs. Springer, Berlin (2011)

    Google Scholar 

  19. Brunner N., Cavalcanti D., Pironio S., Scarani V., Wehner S.: Bell nonlocality. Rev. Mod. Phys. 86(419), (2014)

  20. Cabello A.: Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101(21), 210401 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Cabello, A.: Specker’s fundamental principle of quantum mechanics (2012). arXiv:1212.1756

  22. Cabello A.: A simple explanation of the quantum violation of a fundamental inequality. Phys. Rev. Lett. 110, 060402 (2013)

    Article  ADS  Google Scholar 

  23. Cabello A.: Twin inequality for fully contextual quantum correlations. Phys. Rev. A 87, 010104 (2013)

    Article  ADS  Google Scholar 

  24. Cabello A., Danielsen L.E., López-Tarrida A.J., Portillo J.R.: Basic exclusivity graphs in quantum correlations. Phys. Rev. A 88, 032104 (2013)

    Article  ADS  Google Scholar 

  25. Cabello A., Estebaranz J., García-Alcaine G.: Bell–Kochen–Specker theorem: a proof with 18 vectors. Phys. Lett. A 212(4), 183–187 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Cabello, A., Severini, S., Winter, A.: (Non-)Contextuality of physical theories as an axiom (2010). arXiv:1010.2163. Updated version: Phys. Rev. Lett. 112, 040401 (2014)

  27. Chaves R., Fritz T.: Entropic approach to local realism and noncontextuality. Phys. Rev. A 85(3), 032113 (2012)

    Article  ADS  Google Scholar 

  28. Chudnovsky M., Robertson N., Seymour P., Thomas R.: The strong perfect graph theorem. Ann. Math. (2) 164(1), 51–229 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Clauser J.F., Horne M.A., Shimony A., Holt R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)

    Article  ADS  Google Scholar 

  30. Codenotti B., Gerace I., Resta G.: Some remarks on the Shannon capacity of odd cycles. Ars Combinatoria 66, 243–257 (2003)

    MATH  MathSciNet  Google Scholar 

  31. Coecke, B., Moore, D., Wilce, A.: Operational quantum logic: an overview. Curr. Res. Oper. Quantum Logic, 1–36 (2000)

  32. D’Ariano, G.M.: Probabilistic theories: what is special about quantum mechanics? Philosophy of Quantum Information and Entanglement (2010)

  33. Edmonds J., Fulkerson D. R.: Bottleneck extrema. J. Combin. Theory 8(3), 299–306 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  34. Eiter T.: Exact transversal hypergraphs and application to Boolean \({\mu}\)-functions. J. Symbolic Comput. 17(3), 215–225 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  35. Engel K.: Sperner Theory, Encyclopedia of Mathematics and its Applications, vol. 65. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  36. Fekete M.: Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17(1), 228–249 (1923)

    Article  MATH  MathSciNet  Google Scholar 

  37. Fine A.: Hidden variables, joint probability, and the Bell inequalities. Phys. Rev. Lett. 48(5), 291–295 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  38. Foulis D., Piron C., Randall C.: Realism, operationalism and quantum mechanics. Found. Phys. 13(8), 813–841 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  39. Foulis D.J., Greechie R.J., Rüttimann G.T.: Filters and supports in orthoalgebras, Internat. J. Theoret. Phys. 31(5), 789–807 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  40. Foulis D.J., Randall C.H.: Operational statistics. I. Basic concepts. J. Math. Phys. 13, 1667–1675 (1972)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Foulis, D.J., Randall, C.H.: Empirical logic and tensor products 5, 9–20 (1981)

  42. Foulis D.J., Randall, C.H.: What are quantum logics and what ought they to be? Current Issues in Quantum Logic, pp. 35–52 (1981)

  43. Fritz T.: Tsirelson’s problem and Kirchberg’s conjecture. Rev. Math. Phys. 24, 1250012 (2012)

    Article  MathSciNet  Google Scholar 

  44. Fritz T., Chaves R.: Entropic inequalities and the marginal problem. IEEE Trans. Inf. Theory 59, 803–817 (2013)

    Article  MathSciNet  Google Scholar 

  45. Fritz T., Netzer T., Thom A.: Can you compute the operator norm?. Proc. Am. Math. Soc. 142, 4265–4276 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  46. Fritz T., Sainz A., Augusiak R., Brask J.B., Chaves R., Leverrier A., Acín A.: Local orthogonality: a multipartite principle for correlations. Nature Comm. 4, 2263 (2012)

    Google Scholar 

  47. Fritz, T., Sainz, A.B., Leverrier, A.: Probabilistic models on contextuality scenarios (2013). arXiv:1307.0145

  48. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions: a survey. In: Mathematical Foundations of Computer Science, pp. 37–57 (2001)

  49. Greechie R.J.: Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10, 119–132 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  50. Greenberger D.M., Horne M.A., Shimony A., Zeilinger A.: Bell’s theorem without inequalities. Am. J. Phys. 58(12), 1131–1143 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. Grötschel M., Padberg M.W.: On the symmetric travelling salesman problem. I. Inequalities. Math. Program. 16(3), 265–280 (1979)

    Article  MATH  Google Scholar 

  52. Haag R.: Local quantum physics. Texts and Monographs in Physics, 2nd ed. Springer, Berlin (1996)

    Book  Google Scholar 

  53. Haemers W.: On some problems of Lovász concerning the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25(2), 231–232 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  54. Haemers, W.: An upper bound for the Shannon capacity of a graph. In: Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), pp. 267–272 (1981)

  55. Henson, J.: Quantum contextuality from a simple principle? (2012). arXiv:1210.5978

  56. Imrich, W., Klavz̆ar, S. (eds): Product Graphs: Structure and Recognition. Wiley-Intersciene, New York (2000)

  57. Junge M., Navascués M., Palazuelos C., Pérez-García D., Scholz V.B., Werner R.F.: Connes embedding problem and Tsirelson’s problem. J. Math. Phys. 52(1), 012102, 12 (2011)

    Article  Google Scholar 

  58. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, vol. I. Pure and Applied Mathematics, Elementary Theory, vol. 100. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1983)

  59. Karp, R.M.: Reducibility Among Combinatorial Problems, pp. 85–103 (1972)

  60. Klyachko A.A., Can M.A., Binicioglu S., Shumovsky A.S.: A simple test for hidden variables in spin-1 system. Phys. Rev. Lett. 101, 020403–020406 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  61. Knuth DcE.: The sandwich theorem. Electron. J. Comb. 1, A1 (1994)

    Google Scholar 

  62. Kochen S., Specker E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MATH  MathSciNet  Google Scholar 

  63. Lasserre, J.B.: An explicit equivalent positive semidefinite program for nonlinear 0–1 programs. SIAM J. Optim. 12(3), 756–769 (2002) (electronic).

  64. Laurent M.: A comparison of the Sherali-adams, Lovász–Schrijver and Lasserre relaxations for 0-1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  65. Liang Y.-C., Spekkens Robert W., Wiseman Howard M.: Specker’s parable of the overprotective seer: a road to contextuality, nonlocality and complementarity. Phys. Rep. 506(1–2), 1–39 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  66. Lisonĕk, P., Badziąg, P., Portillo, J., Cabello, A.: The simplest Kochen–Specker set (2013). arXiv:1308.6012

  67. Lovász L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2(3), 253–267 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  68. Lovász L.: Kneser’s conjecture, chromatic number, and homotopy. J. Combin. Theory Ser. A 25(3), 319–324 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  69. Lovász L.: On the Shannon capacity of a graph. IEEE Trans. Inform. Theory 25(1), 1–7 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  70. Lane, S.M., Moerdijk, I.: Sheaves in geometry and logic. In: Universitext. Springer, New York (1979). A first introduction to topos theory, Corrected reprint of the 1992 edition

  71. Naddef D., Pochet Y.: The symmetric traveling salesman polytope revisited. Math. Oper. Res. 26(4), 700–722 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  72. Navascués, M., Guryanova, Y., Hoban, M., Acín, A.: Almost Quantum Correlations (2014). arXiv:1403.4621

  73. Navascués M., Pironio S., Acín A.: Bounding the set of quantum correlations. Phys. Rev. Lett. 98(1), 010401 (2007)

    Article  ADS  Google Scholar 

  74. Navascués M., Pironio S., Acín A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. N. J. Phys. 10(7), 073013 (2008)

    Article  Google Scholar 

  75. Pavičić M., McKay B.D., Megill N.D., Fresl K.: Graph approach to quantum systems. J. Math. Phys. 51(10), 102103, 31 (2010)

    Google Scholar 

  76. Pavičić M., Merlet J.-P., McKay B., Megill Norman D.: Kochen–Specker vectors. J. Phys. A 38(7), 1577–1592 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  77. Pironio S.: Lifting bell inequalities. J. Math. Phys. 46, 062112 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  78. Pironio S., Acín A., Brunner N., Gisin N., Massar S., Scarani V.: Deviceindependent quantum key distribution secure against collective attacks. N. J. Phys. 11, 045021 (2009)

    Article  Google Scholar 

  79. Pironio S., Acín A., Massar S., de la Giroday A.B., Matsukevich D., Maunz P., Olmschenk S., Hayes D., Luo L., Manning T.A., Monroe C.: Random numbers certified by Bell’s theorem. Nature 464, 1021–1024 (2010)

    Article  ADS  Google Scholar 

  80. Pironio S., Navascués M., Acín A.: Convergent relaxations of polynomial optimization problems with noncommuting variables. SIAM J. Optim. 20(5), 2157–2180 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  81. Popescu S., Rohrlich D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  82. The Univalent Foundations Program, Homotopy type theory. Self-published (2013). Available at homotopytypetheory.org/book

  83. Randall C.H., Foulis D.J.: Operational statistics. II. Manuals of operations and their logics. J. Math. Phys. 14, 1472–1480 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  84. Sainz A.B., Fritz T., Augusiak R., Brask J.B., Chaves R., Leverrier A., Acín A.: Exploring the Local Orthogonality principle. Phys. Rev. A 89, 032117 (2014)

    Article  ADS  Google Scholar 

  85. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226 (1978)

  86. Schrijver A.: Combinatorial Optimization. Polyhedra and Efficiency, Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)

    Google Scholar 

  87. Shannon, C.E.: The zero error capacity of a noisy channel. In: Institute of Radio Engineers. Transactions on Information Theory, IT-2, no. September 8–19 (1956)

  88. Shultz F.W.: A characterization of state spaces of orthomodular lattices. J. Combin. Theory Ser. A 17, 317–328 (1974)

    Article  MathSciNet  Google Scholar 

  89. Specker, E.: The logic of non-simultaneously decidable propositions (1960). Translation from the German original by M.P. Seevinck (2011), arXiv:1103.4537

  90. Spekkens R.W.: Contextuality for preparations, transformations, and unsharp measurements. Phys. Rev. A 71(5), 052108 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  91. Svozil K.: Randomness & Undecidability in Physics. World Scientific Publishing Co. Inc., River Edge (1993)

    Book  MATH  Google Scholar 

  92. Svozil, K., Tkadlec, J.: Greechie diagrams, nonexistence of measures in quantum logics and Kochen–Specker-type constructions. J. Math. Phys. 37(11) (1996)

  93. Tarski, A. (ed.): A Decision Method for Elementary Algebra and Geometry 2nd ed. University of California Press, Berkeley and Los Angeles (1951)

    MATH  Google Scholar 

  94. Tkadlec, J.: Diagrams of Kochen–Specker type constructions. Internat. J. Theoret. Phys. 39(3), 921–926 (2000). Quantum structures ’98 (Liptovský Ján)

  95. Tsirelson B.S.: Some results and problems on quantum Bell-type inequalities. Hadronic J. Suppl. 8, 329–345 (1993)

    MATH  MathSciNet  Google Scholar 

  96. Voloshin V.I.: Introduction to Graph and Hypergraph Theory. Nova Science Publishers Inc., New York (2009)

    MATH  Google Scholar 

  97. V.N. N.: Consistent families of measures and their extensions. Theory of Probability and its Applications 7(2), 147–163 (1962)

    Article  Google Scholar 

  98. Weisstein, E.W.: Generalized quadrangle. From MathWorld-A Wolfram Web Resource, mathworld.wolfram.com/GeneralizedQuadrangle.html

  99. Wilce, A.: Formalism and interpretation in quantum theory, 2008. A slightly edited version of a paper to appear as part of a Festchrift for Jeff Bub

  100. Wilce, A.: Test spaces. In: Handbook of Quantum Logic and Quantum Structures-Quantum Logic, pp. 443–549 (2009)

  101. Wolf, M.M., Cubitt, T.S., Perez-García, D.: Are problems in quantum information theory (un)decidable? (2011). http://arxiv.org/abs/1111.5425

  102. Wright, R.: The state of the pentagon: a nonclassical example. In: Mathematical Foundations of Quantum Theory (Proc. Conf., Loyola Univ., New Orleans, La., 1977), pp. 255–274 (1978)

  103. Yan B.: Quantum correlations are tightly bound by the exclusivity principle. Phys. Rev. Lett. 110, 260406 (2013)

    Article  ADS  Google Scholar 

  104. Zeh, H.D.: Quantum nonlocality vs. Einstein locality (2006). http://www.rzuser.uni-heidelberg.de/~as3/nonlocality.html

  105. Ziegler G.M.: Lectures on polytopes. In: Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Fritz.

Additional information

Communicated by A. Winter

We thank Mateus Araújo, Adán Cabello, Ravi Kunjwal, Simone Severini, Alexander Wilce, Andreas Winter, Elie Wolfe and Gilles Zémor for comments and discussion, András Salamon for help with a reference, and Will Traves for help on \({\texttt{MathOverflow}}\). Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Economic Development and Innovation. T.F. was supported by the John Templeton foundation. Part of this work was done while A.L. was at the Institute for Theoretical Physics, ETH Zürich. A.L. was supported by the Swiss National Science Foundation through the National Centre of Competence in Research “Quantum Science and Technology”, by the CNRS through the PEPS ICQ2013 TOCQ, and through the European Research Council (Grant No. 258932). A.B.S. was supported by the ERC SG PERCENT and by the Spanish projects FIS2010-14830 and FPU:AP2009-1174 PhD grant. A.A. was supported by the ERC CoG QITBOX, the Spanish projects FOQUS and DIQIP and the John Templeton Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acín, A., Fritz, T., Leverrier, A. et al. A Combinatorial Approach to Nonlocality and Contextuality. Commun. Math. Phys. 334, 533–628 (2015). https://doi.org/10.1007/s00220-014-2260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2260-1

Keywords

Navigation