Skip to main content
Log in

Application of the Lace Expansion to the \({\varphi^4}\) Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Using the Griffiths–Simon construction of the \({\varphi^4}\) model and the lace expansion for the Ising model, we prove that, if the strength \({\lambda\ge0}\) of nonlinearity is sufficiently small for a large class of short-range models in dimensions d > 4, then the critical \({\varphi^4}\) two-point function \({\langle{\varphi_o\varphi_x \rangle}_{\mu_c}}\) is asymptotically \({|x|^{2-d}}\) times a model-dependent constant, and the critical point is estimated as \({\mu_c = \hat{\fancyscript{J}} -\frac{\lambda}{2} \langle {\varphi_o^2}\rangle_{\mu_c} + O (\lambda^2)}\), where \({\hat{\fancyscript{J}}}\) is the massless point for the Gaussian model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M.: Geometric analysis of \({\phi^4}\) fields and Ising models. Commun. Math. Phys. 86, 1–48 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Bauerschmidt R., Brydges D.C., Slade G.: Scaling limits and critical behaviour of the 4-dimensional n-component \({|\varphi^4|}\) spin model. J. Stat. Phys. 157, 692–742 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  3. Brydges D., Fröhlich J., Spencer T.: The random walk representation of classical spin systems and correlation inequalities. Commun. Math. Phys. 83, 123–150 (1982)

    Article  ADS  Google Scholar 

  4. Brydges D., Fröhlich J., Sokal A.: The random-walk representation of classical spin systems and correlation inequalities. II. The skeleton inequalities. Commun. Math. Phys. 91, 117–139 (1983)

    Article  ADS  Google Scholar 

  5. Brydges D., Spencer T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97, 125–148 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Chen, L.-C., Sakai, A.: Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab. (to appear)

  7. Cotar C., Deuschel J.-D.: Decay of covariances, uniqueness of ergodic component and scaling limit for a class of \({\nabla\phi}\) systems with non-convex potential. Ann. Inst. H. Poincaré Probab. Stat. 48, 609–908 (2012)

    Article  MathSciNet  Google Scholar 

  8. Feldman J., Magnen J., Rivasseau V., Sénéor R.: Construction and Borel summability of infrared \({\varPhi_4^4}\) by a phase space expansion. Commun. Math. Phys. 109, 437–480 (1987)

    Article  ADS  Google Scholar 

  9. Fernández R., Fröhlich J., Sokal A.D.: Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  10. Fröhlich J.: On the triviality of \({\lambda\varphi_d^4}\) theories and the approach to the critical point in \({d\sideset{_{{}{\tiny(} }}{_{{}{\tiny)} }}{\mathop\ge}4}\) dimensions. Nucl. Phys. B 200, 281–296 (1982)

    Article  ADS  Google Scholar 

  11. Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)

    Article  ADS  Google Scholar 

  12. Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)

    Article  ADS  Google Scholar 

  13. Gawȩdzki K., Kupiainen A.: A rigorous block spin approach to massless lattice theories. Commun. Math. Phys. 77, 31–64 (1980)

    Article  ADS  Google Scholar 

  14. Gawȩdzki K., Kupiainen A.: Renormalization group for a critical lattice model. Commun. Math. Phys. 88, 77–94 (1983)

    Article  ADS  Google Scholar 

  15. Gawȩdzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In: Osterwalder, K., Stora, R. (eds.) Critical Phenomena, Random Systems, Gauge Theories, Les Houches Summer School Proceedings, pp. 185–292. North-Holland Physics Publishing, Amsterdam (1984)

  16. Gawȩdzki K., Kupiainen A.: Massless lattice \({\phi_4^4}\) theory: rigorous control of a renormalizable asymptotically free model. Commun. Math. Phys. 99, 197–252 (1985)

    Article  ADS  Google Scholar 

  17. Hara T.: Decay of correlations in nearest-neighbour self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36, 530–593 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hara T., van der Hofstad R., Slade G.: Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31, 349–408 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hara T., Slade G.: On the upper critical dimension of lattice trees and lattice animals. J. Stat. Phys. 59, 1469–1510 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Hara T., Slade G.: Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128, 333–391 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Heydenreich M., van der Hofstad R., Sakai A.: Mean-field behavior for long- and finite-range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132, 1001–1049 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Lebowitz J.: GHS and other inequalities. Commun. Math. Phys. 35, 87–92 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  23. Nguyen B.G., Yang W.-S.: Triangle condition for oriented percolation in high dimensions. Ann. Probab. 21, 1809–1844 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sakai A.: Mean-field critical behavior for the contact process. J. Stat. Phys. 104, 111–143 (2001)

    Article  MATH  Google Scholar 

  25. Sakai A.: Lace expansion for the Ising model. Commun. Math. Phys. 272, 283–344 (2007)

    Article  ADS  MATH  Google Scholar 

  26. Sakai A. et al.: Applications of the lace expansion to statistical-mchanical models. In: Möters, P. (ed.) Analysis and Stochastics of Growth Processes and Interface Models, pp. 123–147. Oxford University Press, Oxford (2008)

  27. Simon B., Griffiths R.B.: The \({(\phi^4)_2}\) field theory as a classical Ising model. Commun. Math. Phys. 33, 145–164 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  28. Slade, G.: The Lace Expansion and its Applications. Lecture Notes in Mathematics, vol. 1879 (2006)

  29. Sokal A.D.: An alternate constructive approach to the \({\varphi_3^4}\) quantum field theory, and a possible destructive approach to \({\varPhi_4^4}\) . Ann. Inst. Henri Poincaré Phys. Théorique 37, 317–398 (1982)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Sakai.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, A. Application of the Lace Expansion to the \({\varphi^4}\) Model. Commun. Math. Phys. 336, 619–648 (2015). https://doi.org/10.1007/s00220-014-2256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2256-x

Keywords

Navigation