Skip to main content
Log in

Quiver Mutation Loops and Partition q-Series

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A quiver mutation loop is a sequence of mutations and vertex relabelings, along which a quiver transforms back to the original form. For a given mutation loop \(\gamma\), we introduce a quantity called a partition q-series \({Z(\gamma)}\) which takes values in \({\mathbb{N}[[q^{1/ \Delta}]]}\) where \(\Delta\) is some positive integer. The partition q-series are invariant under pentagon moves. If the quivers are of Dynkin type or square products thereof, they reproduce so-called fermionic or quasi-particle character formulas of certain modules associated with affine Lie algebras. They enjoy nice modular properties as expected from the conformal field theory point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cecotti, S., Neitzke, A., Vafa, C.: R-twisting and 4d/2d correspondences. arXiv:1006.3435 [preprint] (2010)

  2. Feigin B., Stoyanovsky A.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold. Funct. Anal. Appl. 28(1), 68–90 (1994)

    MathSciNet  Google Scholar 

  3. Fomin S., Zelevinsky A.: Cluster algebras I: Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Fomin S., Zelevinsky A.: Cluster algebras IV: Coefficients. Compositio Mathematica 143(01), 112–164 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Georgiev G.: Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace. J. Pure Appl. Algebra 112(3), 247–286 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Georgiev, G.: Combinatorial constructions of modules for infinite-dimensional Lie algebras, II. Parafermionic space. q-alg/9504024 [preprint] (1995)

  7. Hatayama G., Kirillov A.N., Kuniba A., Okado M., Takagi T., Yamada Y.: Character formulae of \({\widehat{sl}_{n}}\)-modules and inhomogeneous paths. Nucl. Phys. B 536(3), 575–616 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. Kač V.G., Peterson D.H.: Infinite-dimensional Lie algebras, theta functions and modular forms. Adv. Math. 53, 125–264 (1984)

    Article  MATH  Google Scholar 

  9. Kedem R., Klassen T., McCoy B., Melzer E.: Fermionic quasi-particle representations for characters of \({(G^{(1)})_{1} \times (G^{(1)})_{1}/(G^{(1)})_{2}}\). Phys. Lett. B 304(3), 263–270 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Keller B.: The periodicity conjecture for pairs of Dynkin diagrams. Ann. Math. (2) 177(1), 111–170 (2013)

    Article  MATH  Google Scholar 

  11. Kuniba A., Nakanishi T., Suzuki J.: Characters in conformal field theories from thermodynamic Bethe ansatz. Modern Phys. Lett. A 8(18), 1649–1659 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Lepowsky J., Primc M.: Structure of the standard modules for the affine Lie algebra \({A^{(1)}_1}\), volume 46 of Contemporary Mathematics. American Mathematical Society, Providence (1985)

    Book  Google Scholar 

  13. Stoyanovsky A., Feigin B.: Functional models for representations of current algebras and semi-infinite Schubert cells. Funct. Anal. Appl. 28(1), 55–72 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Terashima Y., Yamazaki M.: 3d N = 2 theories from cluster algebras. Prog. Theor. Exp. Phys. 023, B01 (2014)

    Google Scholar 

  15. Terhoeven, M.: Lift of dilogarithm to partition identities. hep-th/9211120 [preprint] (1992)

  16. Zagier, D.: The dilogarithm function. In: Frontiers in number theory, physics, and geometry II, pp. 3–65. Springer, Berlin (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akishi Kato.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, A., Terashima, Y. Quiver Mutation Loops and Partition q-Series. Commun. Math. Phys. 336, 811–830 (2015). https://doi.org/10.1007/s00220-014-2224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2224-5

Keywords

Navigation