Skip to main content
Log in

Localization in Nets of Standard Spaces

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Starting from a real standard subspace of a Hilbert space and a representation of the translation group with natural properties, we construct and analyze for each endomorphism of this pair a local, translationally covariant net of standard subspaces, on the lightray and on two-dimensional Minkowski space. These nets share many features with low-dimensional quantum field theory, described by corresponding nets of von Neumann algebras.

Generalizing a result of Longo and Witten to two dimensions and massive multiplicity free representations, we characterize these endomorphisms in terms of specific analytic functions. Such a characterization then allows us to analyze the corresponding nets of standard spaces, and in particular to compute their minimal localization length. The analogies and differences to the von Neumann algebraic situation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alazzawi, S.: Deformations of fermionic quantum field theories and integrable models. Lett. Math. Phys. 103, 37–58 (2013). http://arxiv.org/abs/1203.2058v1

  2. Araki H.: A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys. 4, 1343–1362 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Araki, H.: Mathematical theory of quantum fields. In: International Series of Monographs on Physics. Oxford University Press, Oxford (1999)

  4. Araki H., Zsido L.: Extension of the structure theorem of Borchers and its application to half-sided modular inclusions. Rev. Math. Phys. 17, 491–543 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bostelmann H., Cadamuro D.: An operator expansion for integrable quantum field theories. J. Phys. A Math. Theor. 46, 095401 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  6. Buchholz D., D’Antoni C., Longo R.: Nuclear maps and modular structures. I. General properties. J. Funct. Anal. 88, 233–250 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Babujian, H.M., Foerster, A., Karowski, M.: The form factor program: a review and new results—the nested SU(N) off-shell Bethe ansatz. SIGMA 2, 082 (2006). http://arxiv.org/abs/hep-th/0609130

  8. Brunetti, R., Guido D., Longo R.: Modular localization and Wigner particles. Rev. Math. Phys. 14, 759–786 (2002). http://arxiv.org/abs/math-ph/0203021

  9. Bischoff, M.: Models in boundary quantum field theory associated with lattices and loop group models. Commun. Math. Phys. 315, 827–858 (2012). http://arxiv.org/abs/1108.4889

  10. Barata, J.C.A., Jäkel, C.D., Mund, J.: The \({{\fancyscript P}(\varphi)_2}\) model on the de Sitter space (2013). Preprint. http://arxiv.org/abs/1311.2905v1

  11. Buchholz, D., Lechner, G.: Modular nuclearity and localization. Ann. Henri Poincaré 5, 1065–1080 (2004). http://arxiv.org/abs/math-ph/0402072

  12. Bostelmann, H., Lechner, G., Morsella, G.: Scaling limits of integrable quantum field theories. Rev. Math. Phys. 23, 1115–1156 (2011). http://arxiv.org/abs/1105.2781

  13. Buchholz, D., Lechner, G., Summers, S.J.: Warped convolutions, Rieffel deformations and the construction of quantum field theories. Commun. Math. Phys. 304, 95–123 (2011). http://arxiv.org/abs/1005.2656

  14. Boas R.: Entire Functions. Academic Press, London (1954)

    MATH  Google Scholar 

  15. Borchers, H.: The CPT theorem in two-dimensional theories of local observables. Commun. Math. Phys. 143, 315–332 (1992). http://projecteuclid.org/euclid.cmp/1104248958

  16. Bischoff, M., Tanimoto, Y.: Construction of wedge-local nets of observables through Longo–Witten endomorphisms. II. Commun. Math. Phys. 317, 667–695 (2013). http://arxiv.org/abs/1111.1671v1

  17. Bischoff, M., Tanimoto, Y.: Integrable QFT and Longo–Witten endomorphisms. Ann. Henri Poincaré (2014). Preprint. doi:10.1007/s00023-014-0337-1

  18. Buchholz, D., Wichmann, E.H.: Causal independence and the energy level density of states in local quantum field theory. Commun. Math. Phys. 106, 321 (1986). http://projecteuclid.org/euclid.cmp/1104115703

  19. Baumgärtel H., Wollenberg M.: Causal Nets of Operator Algebras. Akademie Verlag, Berlin (1992)

    MATH  Google Scholar 

  20. Derezinski, J.: Introduction to representations of canonical commutation and anticommutation relations. Lect. Notes Phys. 695, 63–143 (2006). http://arxiv.org/abs/math-ph/0511030v2

  21. Doplicher, S., Longo, R., Standard and split inclusions of von Neumann algebras. Invent. Math. 75, 493–536 (1984)

  22. Duren, P.: Theory of H p spaces. In: Dover Books on Mathematics. Dover Publications Inc, New York (1970)

  23. Garnett J.: Bounded Analytic Functions. Springer, New York (2007)

    Google Scholar 

  24. Haag, R.: Local Quantum Physics—Fields, Particles, Algebras, 2nd edn. Springer, New York (1996)

  25. Ingham, A.E.: A note on Fourier transforms. J. Lond. Math. Soc. 1, 29–32 (1934)

  26. Kawahigashi, Y., Longo, R.: Classification of local conformal nets: case c < 1. Ann. Math. 160, 493–522 (2004). http://arxiv.org/abs/math-ph/0201015

  27. Kawahigashi, Y., Longo, R.: Local conformal nets arising from framed vertex operator algebras. Adv. Math. 206, 729–751 (2006). http://arxiv.org/abs/math/0407263v2

  28. Kuckert B.: Localization regions of local observables. Commun. Math. Phys. 215, 197–216 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Lechner, G.: Polarization-free quantum fields and interaction. Lett. Math. Phys. 64, 137–154 (2003). http://arxiv.org/abs/hep-th/0303062

  30. Lechner, G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277, 821–860 (2008). http://arxiv.org/abs/math-ph/0601022

  31. Lechner, G.: Deformations of quantum field theories and integrable models. Commun. Math. Phys. 312, 265–302 (2012). http://arxiv.org/abs/1104.1948

  32. Lechner, G., Schützenhofer, C.; Towards an operator-algebraic construction of integrable global gauge theories. Ann. Henri Poincaré 15, 645–678 (2014). http://arxiv.org/abs/1208.2366v1

  33. Lechner, G., Schlemmer, J., Tanimoto, Y.: On the equivalence of two deformation schemes in quantum field theory. Lett. Math. Phys. 103, 421–437 (2013)

  34. Leylands, P., Roberts, J.E., Testard, D.: Duality for quantum free fields (1978). Preprint

  35. Longo, R.: Lectures on conformal nets—part 1. In: Von Neumann Algebras in Sibiu, pp. 33–91. Theta (2008). http://www.mat.uniroma2.it/~longo/Lecture_Notes_files/LN-Part1.pdf

  36. Longo, R., Rehren, K.: Local fields in boundary conformal QFT. Rev. Math. Phys. 16, 909 (2004). http://arxiv.org/abs/math-ph/0405067

  37. Longo, R., Rehren K.: Boundary quantum field theory on the interior of the Lorentz hyperboloid. Commun. Math. Phys. 311, 769–785 (2012). http://arxiv.org/abs/1103.1141

  38. Longo, R., Witten, E.: An algebraic construction of boundary quantum field theory. Commun. Math. Phys. 303, 213–232 (2011). http://arxiv.org/abs/1004.0616

  39. Mund, J., Schroer, B., Yngvason, J.: String-localized quantum fields and modular localization. Commun. Math. Phys. 268, 621–672 (2006). http://arxiv.org/abs/math-ph/0511042

  40. Plaschke, M.: Wedge local deformations of charged fields leading to anyonic commutation relations. Lett. Math. Phys. 103, 507–532 (2013). http://arxiv.org/abs/1208.6141v1

  41. Rosenblum M., Rovnyak J.: Topics in Hardy Classes and Univalent Functions. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  42. Reed M., Simon B.: Methods of Modern Mathematical Physics I—Functional Analysis. Academic Press, London (1972)

    Google Scholar 

  43. Reed M., Simon B.: Methods of Modern Mathematical Physics II—Fourier Analysis. Academic Press, London (1975)

    MATH  Google Scholar 

  44. Schroer, B.: Modular localization and the bootstrap-formfactor program. Nucl. Phys. B 499, 547–568 (1997). http://arxiv.org/abs/hep-th/9702145v1

  45. Schroer, B.: Modular wedge localization and the d = 1 + 1 formfactor program. Ann. Phys. 275, 190–223 (1999). http://arxiv.org/abs/hep-th/9712124

  46. Smirnov F.A.: Form Factors in Completely Integrable Models of Quantum Field Theory. World Scientific, Singapore (1992)

    Book  MATH  Google Scholar 

  47. Stein E.M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  48. Schroer, B., Wiesbrock, H.: Modular constructions of quantum field theories with interactions. Rev. Math. Phys. 12, 301–326 (2000). http://arxiv.org/abs/hep-th/9812251

  49. Tanimoto, Y.: Construction of wedge-local nets of observables through Longo–Witten endomorphisms. Commun. Math. Phys. 314, 443–469 (2012). http://arxiv.org/abs/1107.2629

  50. Wiesbrock, H.: A comment on a recent work of Borchers. Lett. Math. Phys. 25, 157–160 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gandalf Lechner.

Additional information

Communicated by Y. Kawahigashi

Supported in part by ERC, PRIN-MIUR and GNAMPA-INdAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lechner, G., Longo, R. Localization in Nets of Standard Spaces. Commun. Math. Phys. 336, 27–61 (2015). https://doi.org/10.1007/s00220-014-2199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2199-2

Keywords

Navigation