Skip to main content
Log in

The Oriented Graph Complexes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The oriented graph complexes \({GC^{or}_n}\) are complexes of directed graphs without directed cycles. They govern, for example, the quantization of Lie bialgebras and infinite dimensional deformation quantization. Similar to the ordinary graph complexes GC n introduced by Kontsevich they come in two essentially different versions, depending on the parity of n. It is shown that, surprisingly, the oriented graph complex \({GC^{or}_n}\) is quasi-isomorphic to the ordinary commutative graph complex of opposite parity GC n-1, up to some known classes. This yields in particular a combinatorial description of the action of \({\mathfrak{grt}_{1} \cong H^0({\rm GC}_2)}\) on Lie bialgebras, and shows that a cycle-free formality morphism in the sense of Shoikhet can be constructed rationally without reference to configuration space integrals. Curiously, the obstruction class in the oriented graph complex found by Shoikhet corresponds to the well known theta graph in the ordinary graph complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Culler M., Vogtmann K.: Moduli of graphs and automorphisms of free groups. Invent. Math. 84(1), 91–119 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Dolgushev, V.: Stable Formality Quasi-isomorphisms for Hochschild Cochains I. (2011). arXiv:1109.6031

  3. Dolgushev, V., Willwacher, T.: Operadic twisting—with an application to Deligne’s conjecture. to appear in J. Pure Appl. Alg. (2012). arXiv:1207.2180

  4. Kontsevich, M.: Formal non-commutative symplectic geometry. In: Corwin, L., Gelfand, I., Lepowsky, J. (eds.) The Gelfand Mathematical. Seminars, 1990–1992. pp 173–187. Birkhäuser Boston Inc., Boston, MA (1993)

  5. Kontsevich, M.: Formality Conjecture. In: Sternheimer, D., et al. (eds.) Deformation Theory and Symplectic Geometry, pp. 139–156. Kluwer Academic Publications, Dordrecht (1997)

  6. Kontsevich M.: Operads and Motives in deformation quantization. Lett. Math. Phys. 48, 35–72 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Lambrechts, P., Volic, I.: Formality of the little N-disks operad. Mem. Amer. Math. Soc. 230(1079) (2014)

  9. Loday, J.-L., Vallette, B.: Algebraic Operads. Number 346 in Grundlehren der mathematischen Wissenschaften. Springer, Heidelberg (2012)

  10. Markl M., Merkulov S., Shadrin S.: Wheeled PROPs, graph complexes and the master equation. J. Pure Appl. Algebra 213(4), 496–535 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Markl, M., Voronov, A.A.: PROPped-up graph cohomology. In: Algebra, arithme tic, and geometry: in honor of Yu. I. Manin. Vol. II, volume 270 of Progr. Math., pp. 249–281. Birkhäuser Boston Inc., Boston, MA, (2009)

  12. Merkulov, S.A.: PROP profile of deformation quantization and graph complexes with loops and wheels. (2004). arXiv:math/0412257

  13. Merkulov S., Vallette B.: Deformation theory of representations of prop(erad)s. II. J. Reine Angew. Math. 636, 123–174 (2009)

    MATH  MathSciNet  Google Scholar 

  14. Penkava M., Vanhaecke P.: Deformation quantization of polynomial Poisson algebras. J. Algebra 227(1), 365–393 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rossi, C.A., Willwacher, T.: P.Etingof’s conjecture about Drinfeld associators. (2014). arXiv:1404.2047

  16. Shoikhet, B.: An \({L_\infty}\) algebra structure on polyvector fields. (2008). arXiv:0805.3363

  17. van der Laan, P.P.I.: Operads up to Homotopy and Deformations of Operad Maps. (2002). arXiv:math/0208041

  18. Willwacher, T.: M. Kontsevich’s graph complex and the Grothendieck-Teichmüller Lie algebra. to appear in Invent. Math. (2010). arXiv:1009.1654

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Willwacher.

Additional information

Communicated by N. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willwacher, T. The Oriented Graph Complexes. Commun. Math. Phys. 334, 1649–1666 (2015). https://doi.org/10.1007/s00220-014-2168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2168-9

Keywords

Navigation