Skip to main content
Log in

Tetrahedron Equation and Quantum R Matrices for q-oscillator Representations of \({U_q(A^{(2)}_{2n})}\), \({U_q(C^{(1)}_{n})}\) and \({U_q(D^{(2)}_{n+1})}\)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The intertwiner of the quantized coordinate ring A q (sl 3) is known to yield a solution to the tetrahedron equation. By evaluating their n-fold composition with special boundary vectors we generate series of solutions to the Yang-Baxter equation. Finding their origin in conventional quantum group theory is a clue to the link between two and three dimensional integrable systems. We identify them with the quantum R matrices associated with the q-oscillator representations of \({U_q(A^{(2)}_{2n})}\), \({U_q(C^{(1)}_n)}\) and \({U_q(D^{(2)}_{n+1})}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Dover, New York (2007)

    MATH  Google Scholar 

  2. Bazhanov, V.V., Mangazeev V.V., Sergeev, S.M.: Quantum geometry of 3-dimensional lattices. J. Stat. Mech. P07004 (2008)

  3. Bazhanov V.V., Mangazeev V.V., Sergeev S.M.: An integrable 3D lattice model with positive Boltzmann weights. J. Phys. A Math. Theor. 46, 465206 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bazhanov V.V., Sergeev S.M.: Zamolodchikov’s tetrahedron equation and hidden structure of quantum groups. J. Phys. A Math. Theor. 39, 3295–3310 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2, pp. 798–820 (Berkeley, California, 1986). American Mathematical Society, Providence, RI (1987)

  6. Gasper, G., Rahman,M.: Basic hypergeornerric series. In: Rota, G.C. (ed.) Encyclopedia ofMathematics and its Applications, vol. 35, Cambridge Univ. Press (1990)

  7. Jimbo M.: A q-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Hayashi T.: Q-analogues of Clifford and Weyl algebras–spinor and oscillator representations of quantum enveloping algebras. Comm. Math. Phys. 127, 129–144 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kac V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  10. Kapranov M.M., Voevodsky V.A.: 2-Categories and Zamolodchikov tetrahedron equations. Proc. Symposia Pure Math. 56, 177–259 (1994)

    Article  MathSciNet  Google Scholar 

  11. Kashaev, R.M., Volkov, A.Yu.: From the tetrahedron equation to universal R-matrices. L. D. Faddeev’s Seminar on Mathematical Physics, pp. 79–89. Amer. Math. Soc. Transl. Ser. 2, vol. 201. American Mathematical Society, Providence, RI (2000)

  12. Kuniba, A., Okado, M.: Tetrahedron and 3D reflection equations from quantized algebra of functions. J. Phys. A: Math. Theor. 45, 465206 (27pp) (2012)

  13. Kuniba, A., Okado, M.: Tetrahedron equation and quantum R matrices for infinite dimensional modules of \({U_q(A^{(1)}_1)}\) and \({U_q(A^{(2)}_2)}\). J. Phys. A: Math. Theor. 46, 485203 (12pp) (2013)

  14. Kuniba, A., Okado, M., Yamada, Y.: A common structure in PBW bases of the nilpotent subalgebra of \({U_q(\mathfrak{g})}\) and quantized algebra of functions, SIGMA 9, 049, 23 pages (2013)

  15. Kuniba A., Sergeev S.: Tetrahedron equation and quantum R matrices for spin representations of \({B^{(1)}_n, D^{(1)}_n}\) and \({D^{(2)}_{n+1}}\). Commun. Math. Phys. 324, 695–713 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Masuda T., Mimachi K., Nakagami Y., Noumi M., Saburi Y., Ueno K.: Unitary representations of the quantum group SU q (1, 1): II - Matrix elements of unitary representations and the basic hypergoemetric functions. Lett. Math. Phys. 19, 195–204 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Okado M.: Quantum R matrices related to the spin representations of B n and D n . Commun. Math. Phys. 134, 467–486 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Pusz W.: Irreducible unitary representations of quantum Lorentz group. Commun. Math. Phys. 152, 591–626 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Sergeev S.M.: Two-dimensional R-matrices—descendants of three-dimensional R-matrices. Modern Phys. Lett. A 12, 1393–1410 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Sergeev S.M.: Tetrahedron equations and nilpotent subalgebras of \({\mathcal{U}_q(sl_n)}\). Lett. Math. Phys. 83, 231–235 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Zamolodchikov A.B.: Tetrahedra equations and integrable systems in three-dimensional space. Soviet Phys. JETP 79, 641–664 (1980)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Okado.

Additional information

Communicated by N. Reshetikhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuniba, A., Okado, M. Tetrahedron Equation and Quantum R Matrices for q-oscillator Representations of \({U_q(A^{(2)}_{2n})}\), \({U_q(C^{(1)}_{n})}\) and \({U_q(D^{(2)}_{n+1})}\) . Commun. Math. Phys. 334, 1219–1244 (2015). https://doi.org/10.1007/s00220-014-2147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2147-1

Keywords

Navigation