Skip to main content
Log in

Construction of KMS States in Perturbative QFT and Renormalized Hamiltonian Dynamics

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

An Erratum to this article was published on 20 July 2016

Abstract

We present a general construction of KMS states in the framework of perturbative algebraic quantum field theory (pAQFT). Our approach may be understood as an extension of the Schwinger–Keldysh formalism. We obtain in particular the Wightman functions at positive temperature, thus solving a problem posed some time ago by Steinmann (Commun Math Phys 170:405–416, 1995). The notorious infrared divergences observed in a diagrammatic expansion are shown to be absent due to a consequent exploitation of the locality properties of pAQFT. To this avail, we introduce a novel, Hamiltonian description of the interacting dynamics and find, in particular, a precise relation between relativistic QFT and rigorous quantum statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altherr T.: Infrared problem in \({g\varphi^4}\) theory at finite temperature. Phys. Lett. B 238(2–4), 360–366 (1990)

    Article  ADS  Google Scholar 

  2. Anisimov A., Buchmuller W., Drewes M., Mendizabal S.: Nonequilibrium dynamics of scalar fields in a thermal bath. Ann. Phys. 324, 1234–1260 (2009)

    Article  ADS  MATH  Google Scholar 

  3. Araki, H.: Einführung in die axiomatische Quantenfeldtheorie, 1 (ETH Zürich) (1961)

  4. Araki H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. Res. Inst. Math. Sci. 9(1), 165–209 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bär C., Fredenhagen K.: Quantum field theory on curved spacetimes. Lecture Notes Phys. 786, 1–155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berges J.: Introduction to nonequilibrium quantum field theory. AIP Conf. Proc. 739, 3–62 (2005)

    Article  ADS  Google Scholar 

  7. Birke L., Fröhlich J.: KMS, etc. Rev. Math. Phys. 14, 829–871 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogolyubov N.N., Shirkov D.V.: Introduction to the Theory of Quantized Fields. Wiley, New York (1980)

    MATH  Google Scholar 

  9. Bordemann M., Waldmann S.: Formal GNS construction and states in deformation quantization. Commun. Math. Phys. 195, 549 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bratteli O., Kishimoto A., Robinson D.W.: Stability properties and the KMS condition. Commun. Math. Phys. 61(3), 209–238 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics 2: equilibrium states. In: Models in Quantum Statistical Mechanics. Springer, Berlin (2002)

  12. Bros J., Buchholz D.: Towards a relativistic KMS condition. Nucl. Phys. B429, 291–318 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bros J., Buchholz D.: Axiomatic analyticity properties and representations of particles in thermal quantum field theory. Annales Poincare Phys. Theor. 64, 495–522 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Bros J., Buchholz D.: Asymptotic dynamics of thermal quantum fields. Nucl. Phys. B 627, 289–310 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Buchholz D., Solveen C.: Unruh effect and the concept of temperature. Class. Quantum Gravity 30, 085011 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Chilian B., Fredenhagen K.: The time-slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513–522 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Dütsch M., Fredenhagen K.: Algebraic quantum field theory, perturbation theory, and the loop expansion. Commun. Math. Phys. 219, 5–30 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Dybalski W.: Haag-Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Epstein H., Glaser V.: The role of locality in perturbation theory. Annales Poincare Physique Théorique A 19, 211–295 (1973)

    MathSciNet  MATH  Google Scholar 

  22. Epstein, H., Glaser V.: Adiabatic limit in perturbation theory. In: Velo, G., Wightman, A.S. (eds.) Renormalization Theory, vol. 23. NATO Advanced Study Institutes Series, pp. 193–254. Springer Netherlands (1976)

  23. Ezawa H., Tomozawa Y., Umezawa H.: Quantum statistics of fields and multiple production of mesons. Il Nuovo Cimento 5(4), 810–841 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory (2012). arXiv:math-ph/1208.1428

  25. Gårding L., Wightman A.S.: Fields as operator-valued distributions in relativistic quantum field theory. Arkiv för Fysik 28, 129–184 (1964)

    Google Scholar 

  26. Gérard C., Jäkel C.: Thermal quantum fields with spatially cutoff interactions in 1+1 space-time dimensions. J. Funct. Anal. 220, 157–213 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gérard C., Jäkel C.: Thermal quantum fields without cutoffs in 1+1 space-time dimensions. Rev. Math. Phys. 17, 113–173 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Haag R.: On quantum field theories. Det Kongelige Danske Videnskabernes Selskab, Matematisk-fysiske Meddelelser 29(12), 1–37 (1955)

    MathSciNet  MATH  Google Scholar 

  29. Haag R.: Local Quantum Physics. Fields Particles Algebras. Text and Monographs in Physics. Springer-Verlag, Berlin (1992)

    MATH  Google Scholar 

  30. Haag R., Hugenholtz Nico M., Winnink M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5(3), 215–236 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Haag R., Schroer B.: Postulates of quantum field theory. J. Math. Phys. 3(2), 248–256 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Hall, D., Wightman, A.S.: A theorem on invariant analytic functions with applications to relativistic quantum field theory. Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser 31(5) (1957)

  33. Høegh-Krohn R.: Relativistic quantum statistical mechanics in two-dimensional space-time. Commun. Math. Phys. 38(3), 195–224 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  34. Hollands S., Wald Robert M.: Local Wick polynomials and time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 223(2), 289–326 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Hollands S., Wald Robert M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Commun. Math. Phys. 231(2), 309–345 (2002)

    Article  ADS  MATH  Google Scholar 

  36. Hörmander L.: The Analysis of Linear Partial Differential Operators: Distribution Theory and Fourier Analysis, Springer Study Edition. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  37. Il’in V.A., Slavnov D.A.: Algebras of observables in the S-matrix approach. Theor. Math. Phys. 36(1), 578–585 (1978)

    Article  MathSciNet  Google Scholar 

  38. Jäkel, C., Robl, F.: The relativistic KMS condition for the thermal n-point functions of the P(ϕ)2 model (2011). arXiv:1103.3609

  39. Keldysh Leonid V.: Diagram technique for nonequilibrium processes. Sov. Phys. JETP 20(4), 1018–1026 (1965)

    MathSciNet  Google Scholar 

  40. Johannes, K.K.: Dimensional regularization in position space and a forest formula for regularized Epstein-Glaser renormalization. (2010). arXiv:mathph/1006.2148

  41. Kopper C., Müller Volkhard F., Reisz T.: Temperature independent renormalization of finite temperature field theory. Annales Henri Poincare 2, 387–402 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Landsman Nicolaas, P., van Weert Christiaan, G.: Real and imaginary time field theory at finite temperature and density Phys. Rep. 145 141 (1987)

  43. Le Michel B.: Thermal Field Theory. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  44. Lindner, F.: Perturbative Algebraic Quantum Field Theory at Finite Temperature. PhD thesis, University of Hamburg (2013)

  45. Matsubara T.: A new approach to quantum-statistical mechanics. Progress Theor. Phys. 14(4), 351–378 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Matsumoto H., Ojima I., Umezawa H.: Perturbation and renormalization in thermo field dynamics. Ann. Phys. 152, 348 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  47. Narnhofer H., Requardt M., Thirring W.: Quasi-particles at finite temperatures. Commun. Math. Phys. 92(2), 247–268 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Osterwalder K., Schrader R.: Axioms for euclidean green’s functions. Commun. Math. Phys. 31(2), 83–112 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Ruelle D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1969)

    MATH  Google Scholar 

  50. Sakai S.: Operator Algebras in Dynamical systems. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  51. Scharf G.: Finite Quantum Electrodynamics: the Causal Approach, vol. 5. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  52. Schwinger J.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Spohn H.: Dynamics of Charged Particles and Their Radiation Field. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  54. Steinmann O.: Perturbation theory of Wightman functions. Commun. Math. Phys. 152(3), 627–645 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Steinmann O.: Perturbative quantum field theory at positive temperatures: an axiomatic approach. Commun. Math. Phys. 170, 405–416 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Strichartz Robert S.: A Guide to Distribution Theory and Fourier Transforms. World Scientific Publishing Company, Singapore (2003)

    Book  MATH  Google Scholar 

  57. Stückelberg E.C.G.: Relativistic quantum theory for finite time intervals. Phys. Rev. 81, 130–133 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  58. Van Hove L.: Quelques propriétés générales de l’intégrale de configuration d’un système de particules avec interaction. Physica 15(11), 951–961 (1949)

    Article  ADS  MATH  Google Scholar 

  59. Verch R.: Local definiteness, primarity and quasiequivalence of quasifree Hadamard quantum states in curved space-time. Commun. Math. Phys. 160, 507–536 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Zinn-Justin J. et al.: Quantum Field Theory and Critical Phenomena, vol. 142. Clarendon Press, Oxford (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Fredenhagen.

Additional information

Communicated by M. Salmhofer

Dedicated to the memory of Othmar Steinmann $${^*27.11.1932 \quad ^\dagger 11.03.2012}$$ ∗ 27.11 . 1932 † 11.03 . 2012

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fredenhagen, K., Lindner, F. Construction of KMS States in Perturbative QFT and Renormalized Hamiltonian Dynamics. Commun. Math. Phys. 332, 895–932 (2014). https://doi.org/10.1007/s00220-014-2141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2141-7

Keywords

Navigation