Skip to main content
Log in

An Abstract Nash–Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove an abstract implicit function theorem with parameters for smooth operators defined on scales of sequence spaces, modeled for the search of quasi-periodic solutions of PDEs. The tame estimates required for the inverse linearised operators at each step of the iterative scheme are deduced via a multiscale inductive argument. The Cantor-like set of parameters where the solution exists is defined in a non inductive way. This formulation completely decouples the iterative scheme from the measure theoretical analysis of the parameters where the small divisors non-resonance conditions are verified. As an application, we deduce the existence of quasi-periodic solutions for forced NLW and NLS equations on any compact Lie group or manifold which is homogeneous with respect to a compact Lie group, extending previous results valid only for tori. A basic tool of harmonic analysis is the highest weight theory for the irreducible representations of compact Lie groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bambusi D., Delort J.M., Grébert B., Szeftel J.: Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math. 60(11), 1665–1690 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berti M., Biasco L.: Branching of Cantor manifolds of elliptic tori and applications to PDEs. Comm. Math. Phys 305(3), 741–796 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Berti M., Bolle P.: Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134(2), 359–419 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berti M., Bolle P.: Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25, 2579–2613 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Berti M., Bolle P.: Quasi-periodic solutions with Sobolev regularity of NLS on \({\mathbb{T}^{d}}\) with a multiplicative potential. J. Eur. Math. Soc. 15, 229–286 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berti M., Bolle P., Procesi M.: An abstract Nash–Moser theorem with parameters and applications to PDEs. Ann. I. H. Poincaré 1, 377–399 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. Berti M., Procesi M.: Nonlinear wave and Schrödinger equations on compact Lie groups and Homogeneous spaces. Duke Math. J. 159, 479–538 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Internat. Math. Res. Notices 11 (1994)

  9. Bourgain J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. In: Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)

  11. Bröcker, T., Tom Dieck, T.: Representations of Compact Lie Groups. In: Graduate Texts in Mathematics, vol. 98. Springer, New York (1995)

  12. Chierchia L., You J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Comm. Math. Phys. 211, 497–525 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Craig W., Wayne C.E.: Newton’s method and periodic solutions of nonlinear wave equation. Comm. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Eliasson L.H., Kuksin S.: KAM for non-linear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Eliasson L.H., Kuksin S.: On reducibility of Schrödinger equations with quasiperiodic in time potentials. Comm. Math. Phys. 286, 125–135 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Geng J., Xu X., You J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226, 5361–5402 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Helgason, S.: Geometric analysis on symmetric spaces. In: Mathematical Surveys and Monographs, vol. 39. American Mathematical Society, Providence (1994)

  18. Helgason, S.: Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions, corrected reprint of the 1984 original. In: Mathematical Surveys and Monograohs, vol. 83. American Mathematical Society, Providence (2000)

  19. Kuksin S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. In: Funktsional Anal. i Prilozhen. 21, pp. 22–37, 95 (1987)

  20. Kuksin, S.: Analysis of Hamiltonian PDEs. In: Oxford Lecture Series in Mathematics and its Applications, vol. 19 Oxford University Press, Oxford (2000)

  21. Kuksin S., Pöschel J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. (2) 79, 143–149 (1996)

    Google Scholar 

  22. Pöschel J.: A KAM-Theorem for some nonlinear PDEs. Ann. Sc. Norm. Pisa 23, 119–148 (1996)

    MATH  Google Scholar 

  23. Procesi C.: Lie Groups: an Approach Through Invariants and Representations, Universitext. Springer, New York (2007)

    Google Scholar 

  24. Procesi, M., Procesi, C.: A KAM algorithm for the resonant nonlinear Schrödinger equation, preprint, 2013

  25. Procesi M., Xu X.: Quasi-Töplitz Functions in KAM Theorem. SIAM J. Math. Anal. 45(4), 2148–2181 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang, W.M.: Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions (2011)

  27. Wayne E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys. 127, 479–528 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Procesi.

Additional information

Communicated by W. Schlag

This research was supported by the European Research Council under FP7 and partially by the PRIN2009 grant “Critical point theory and perturbative methods for nonlinear differential equations”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berti, M., Corsi, L. & Procesi, M. An Abstract Nash–Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds. Commun. Math. Phys. 334, 1413–1454 (2015). https://doi.org/10.1007/s00220-014-2128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2128-4

Keywords

Navigation