Skip to main content
Log in

Metastable States When the Fermi Golden Rule Constant Vanishes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Resonances appearing by perturbation of embedded non-degenerate eigenvalues are studied in the case when the Fermi Golden Rule constant vanishes. Under appropriate smoothness properties for the resolvent of the unperturbed Hamiltonian, it is proved that the first order Rayleigh–Schrödinger expansion exists. The corresponding metastable states are constructed using this truncated expansion. We show that their exponential decay law has both the decay rate and the error term of order ɛ 4, where ɛ is the perturbation strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.J.F.: Sobolev Spaces. Second edition. Elsevier/Academic Press, Amsterdam (2003)

    Google Scholar 

  2. Agmon S., Herbst I., Maad Sasane S.: Persistence of embedded eigenvalues. J. Funct. Anal. 261(2), 451–477 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amrein W.O., Boutet de Monvel A., Georgescu V.: C 0-Groups, Commutator Methods and Spectral Theory of N-body Hamiltonians. Progress in Mathematics, vol. 135. Birkhäuser, Basel (1996)

    Book  Google Scholar 

  4. Balslev E., Combes J.-M.: Spectral properties of many body Schrödinger operators with dilatation analytic interactions. Commun. Math. Phys. 22, 280–294 (1971)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Cattaneo L., Graf G.M., Hunziker W.: A general resonance theory based on Mourre’s inequality. Ann. H. Poincaré 7, 583–614 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Costin O., Soffer A.: Resonance theory for Schrödinger operators. Commun. Math. Phys. 224, 133–152 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Davies E.B.: Resonances, spectral concentration and exponential decay. Lett. Math. Phys. 1, 31–35 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Demuth M.: Pole approximation and spectral concentration. Math. Nachr. 73, 65–72 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dinu V., Jensen A., Nenciu G.: Perturbation of near threshold eigenvalues: crossover from exponential to non-exponential decay laws. Rev. Math. Phys. 23, 83–125 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Exner P.: Open Quantum Systems and Feynman Integrals. Reidel, Dordrecht (2002)

    Google Scholar 

  11. Faupin J., Møller J.S., Skibsted E.: Second order perturbation theory for embedded eigenvalues. Commun. Math. Phys. 306(1), 193–228 (2011)

    Article  ADS  MATH  Google Scholar 

  12. Fonda L., Ghirardi G.C., Rimini A.: Decay theory of unstable quantum systems. Rep. Prog. Phys. 41, 587–631 (1978)

    Article  ADS  Google Scholar 

  13. Gakhov F.D.: Boundary Value Problems. Pergamon Press, Oxford (1966)

    MATH  Google Scholar 

  14. Georgescu V., Gérard C., Møller J.S.: Commutators, C 0-semigroups and resolvent estimates. J. Funct. Anal. 216(2), 303–361 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Greenland P.T.: Seeking the non-exponential decay. Nature 335, 298–299 (1988)

    Article  ADS  Google Scholar 

  16. Harrell, E.: Perturbation theory and atomic resonances since Schrödinger’s time. In: Proceedings of Symposia in Pure Mathematics, vol. 76, Part 1, pp. 227–248. American Mathematical Society, Providence (2007)

  17. Howland J.: A note on spectral concentration for non-isolated eigenvalues. J. Math. Anal. Appl. 158, 20–27 (1991)

    Article  MathSciNet  Google Scholar 

  18. Hunziker W.: Resonances, metastable states and exponential decay laws in perturbation theory. Commun. Math. Phys. 132, 177–188 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Jensen A.: Resonances in an abstract analytic scattering theory. Ann. Inst. H. Poincaré Sect. A (N.S.) 33(2), 209–223 (1980)

    MATH  Google Scholar 

  20. Jensen A., Nenciu G.: The Fermi golden rule and its form at thresholds in odd dimensions. Commun. Math. Phys. 261, 693–727 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Jensen A., Nenciu G.: Schrödinger operators on the half line: resolvent expansions and the Fermi golden rule at thresholds. Proc. Indian Acad. Sci. Math. Sci. 116(4), 375–392 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jensen, A., Nenciu, G.: On the Fermi golden rule: degenerate eigenvalues, In: Perspectives in Operator Algebras and Mathematical Physics, pp. 91–103. Theta, Bucharest (2008) (Proceedings Conference on Operator Theory and Mathematical Physics, Bucharest, August 2005)

  23. Jensen A., Nenciu G.: Uniqueness results for transient dynamics of quantum systems. Contemp. Math. 447, 165–174 (2007)

    Article  MathSciNet  Google Scholar 

  24. Kato T.: Perturbation Theory for Linear Operators. Reprint of the 1980 edition. Classics in Mathematics. Springer, Berlin (1995)

    Google Scholar 

  25. Klein M., Rama J.: Almost exponential decay and Paley–Wiener type estimates in Gevrey spaces, Ann. Henri Poincaré. 11, 499–537 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  26. Köhler T., Gàbor K., Julienne P.: Production of cold molecules via tunable Feschbach resonances. Rev. Mod. Phys. 78, 1311–1369 (2006)

    Article  ADS  Google Scholar 

  27. Kuroda S.T.: Scattering theory for differential operators. I. Operator theory. J. Math. Soc. Japan 25, 75–104 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kuroda, S.T.: An introduction to scattering theory. Lecture Notes Series, vol. 51. Aarhus Universitet, Matematisk Institut, Aarhus (1978)

  29. Lewenstein M., Zakrewski J., Mossberg T., Mostowski J.: Non-exponential spontaneous decay in cavities and waveguides. J. Phys. B: At. Mol. Opt. Phys. 21, L9–L14 (1988)

    Article  ADS  Google Scholar 

  30. Merkli M.: Level shift operators for open quantum systems. J. Math. Anal. Appl. 327, 376–399 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  31. Merkli M., Sigal I.M.: A time-dependent theory of quantum resonances. Commun. Math. Phys. 201, 549–576 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Mityagin B.: Perturbation of an orthogonal projection and the intertwining unitary operator. Russ. J. Math. Phys. 12, 489–496 (2005)

    MATH  MathSciNet  Google Scholar 

  33. Nakazato H., Namiki M., Pascazio S.: Temporal behavior of quantum mechanical systems. Int. J. Mod. Phys. B 3, 247–295 (1996)

    Article  ADS  Google Scholar 

  34. Nenciu G.: On asymptotic perturbation theory for quantum mechanics: almost invariant subspaces and gauge invariant magnetic perturbation theory. J. Math. Phys. 43, 1273–1298 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Newton R.G.: Quantum Physics. Springer, Berlin (2002)

    Google Scholar 

  36. Nicolaides C.: Physical constraints on nonstationary states and nonexponential decay. Phys. Rev. A 66, 022118 (2002)

    Article  ADS  Google Scholar 

  37. Nygaard N., Schneider B., Julienne P.: Two channel R-matrix analysis of magnetic induced resonances. Phys. Rev. A 73, 042705 (2006)

    Article  ADS  Google Scholar 

  38. Orth A.: Quantum mechanical resonance and limiting absorption: the many body problem. Commun. Math. Phys. 126, 559–573 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Simon B.: Resonances in N-body quantum systems with dilatation analytic potentials and the foundation of time-dependent perturbation theory. Ann. Math. 97, 247–274 (1973)

    Article  MATH  Google Scholar 

  40. Soffer A., Weinstein M.I.: Time dependent resonance theory. GAFA 8, 1086–1128 (1998)

    MATH  MathSciNet  Google Scholar 

  41. Skibsted E.: Truncated Gamow functions, α-decay and the exponential law. Commun. Math. Phys. 104, 591–604 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Yafaev, D.R.: Mathematical scattering theory. General theory. Translated from the Russian by J. R. Schulenberger. Translations of Mathematical Monographs, vol. 105. American Mathematical Society, Providence (1992)

  43. Yafaev, D.R.: Mathematical scattering theory. Analytic theory. Mathematical Surveys and Monographs, vol. 158. American Mathematical Society, Providence (2010)

  44. Yajima K.: Spectral and scattering theory for Schrödinger operators with Stark effect. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28(1), 1–15 (1981)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne Jensen.

Additional information

Communicated by B. Simon

Copyright © 2014 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornean, H.D., Jensen, A. & Nenciu, G. Metastable States When the Fermi Golden Rule Constant Vanishes. Commun. Math. Phys. 334, 1189–1218 (2015). https://doi.org/10.1007/s00220-014-2127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2127-5

Keywords

Navigation