Skip to main content
Log in

Inverse Problem for the Wave Equation with a White Noise Source

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a smooth Riemannian metric tensor g on \({\mathbb{R}^n}\) and study the stochastic wave equation for the Laplace-Beltrami operator \({\partial_t^2 u - \Delta_g u = F}\). Here, F = F(t, x, ω) is a random source that has white noise distribution supported on the boundary of some smooth compact domain \({M \subset \mathbb{R}^n}\). We study the following formally posed inverse problem with only one measurement. Suppose that g is known only outside of a compact subset of M int and that a solution \({u(t, x, \omega_0)}\) is produced by a single realization of the source \({F(t, x, \omega_0)}\). We ask what information regarding g can be recovered by measuring \({u(t, x, \omega_0)}\) on \({\mathbb{R}_+ \times \partial M}\) ? We prove that such measurement together with the realization of the source determine the scattering relation of the Riemannian manifold (M, g) with probability one. That is, for all geodesics passing through M, the travel times together with the entering and exit points and directions are determined. In particular, if (M, g) is a simple Riemannian manifold and g is conformally Euclidian in M, the measurement determines the metric g in M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Astala K., Päivärinta L.: Calderón’s inverse conductivity problem in the plane. Ann. Math. (2) 163(1), 265–299 (2006)

    Article  MATH  Google Scholar 

  2. Astala K., Päivärinta L., Lassas M.: Calderón’s inverse problem for anisotropic conductivity in the plane. Commun. Partial Differ. Equ. 30(1-3), 207–224 (2005)

    Article  MATH  Google Scholar 

  3. Babich, V.M., Buldyrev, V.S.: Asimptoticheskie metody v zadachakh difraktsii korotkikh voln. Tom l. Izdat. “Nauka”, Moscow (1972) [Metod etalonnykh zadach (The method of canonical problems)]

  4. Babich, V.M., Buldyrev, V.S., Molotkov, I.A.: Prostranstvenno-vremennoi luchevoi metod. Leningrad. Univ., Leningrad (1985) [Lineinye i nelineinye volny (Linear and nonlinear waves)]

  5. Babich, V.M., Ulin, V.V.: The complex space-time ray method and “quasiphotons”. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 117(197), 5–12 (1981). Mathematical questions in the theory of wave propagation, 12

  6. Bal G., Ryzhik L.: Time reversal and refocusing in random media. SIAM J. Appl. Math. 63(5), 1475–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Belishev M.I.: An approach to multidimensional inverse problems for the wave equation. Dokl. Akad. Nauk SSSR 297(3), 524–527 (1987)

    MathSciNet  Google Scholar 

  8. Belishev M.I., Kurylev Y.V.: To the reconstruction of a Riemannian manifold via its spectral data (BC-method). Commun. Partial Differ. Equ. 17(5-6), 767–804 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellassoued M., Yamamoto M.: Determination of a coefficient in the wave equation with a single measurement. Appl. Anal. 87(8), 901–920 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bogachev, V.I.: Gaussian measures, vol. 62 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1998)

  11. Borcea L., Papanicolaou G., Tsogka C., Berryman J.: Imaging and time reversal in random media. Inverse Probl. 18(5), 1247–1279 (2002)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Brislawn C.: Kernels of trace class operators. Proc. Am. Math. Soc. 104(4), 1181–1190 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brzeźniak Z., Ondreját M.: Weak solutions to stochastic wave equations with values in Riemannian manifolds. Commun. Partial Differ. Equ. 36(9), 1624–1653 (2011)

    Article  MATH  Google Scholar 

  14. Brzeźniak, Z., Peszat, S.: Hyperbolic equations with random boundary conditions. In: Recent Development in Stochastic Dynamics and Stochastic Analysis, vol. 8 of Interdiscip. Math. Sci., pp. 1–21. World Sci. Publ., Hackensack (2010)

  15. Bukhgeim A.L.: Recovering a potential from Cauchy data in the two-dimensional case. J. Inverse Ill-Posed Probl. 16(1), 19–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bukhgeĭm A.L., Klibanov M.V.: Uniqueness in the large of a class of multidimensional inverse problems. Dokl. Akad. Nauk SSSR 260(2), 269–272 (1981)

    MathSciNet  Google Scholar 

  17. Burago D., Ivanov S.: Boundary rigidity and filling volume minimality of metrics close to a flat one. Ann. Math. (2) 171(2), 1183–1211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carmona R., Nualart D.: Random nonlinear wave equations: smoothness of the solutions. Prob. Theory Relat. Fields 79(4), 469–508 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cotter S.L., Dashti M., Stuart A.M.: Approximation of Bayesian inverse problems for PDEs. SIAM J. Numer. Anal. 48(1), 322–345 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions, vol. 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1992)

  21. Dalang R.C., Lévêque O.: Second-order linear hyperbolic SPDEs driven by isotropic Gaussian noise on a sphere. Ann. Prob. 32(1B), 1068–1099 (2004)

    Article  MATH  Google Scholar 

  22. Dalang, R.C., Lévêque, O.: Second-order hyperbolic S.P.D.E.’s driven by homogeneous Gaussian noise on a hyperplane. Trans. Am. Math. Soc. 358(5), 2123–2159 (2006) (electronic)

  23. DosSantos Ferreira D., Kenig C.E., Salo M., Uhlmann G.: Limiting Carleman weights and anisotropic inverse problems. Invent. Math. 178(1), 119–171 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  24. Duistermaat, J.J.: Fourier integral operators, volume 130 of Progress in Mathematics. Birkhäuser Boston Inc., Boston (1996)

  25. Egorov Y.V., Shubin M.A.: Linear partial differential equations. Foundations of the classical theory. In: Partial Differential Equations, I, vol. 30 of Encyclopaedia Math. Sci., pp. 1–259. Springer, Berlin (1992)

  26. Evans, L.C.: Partial differential equations, vol. 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence (1998)

  27. Fouque, J.-P., Garnier, J., Papanicolaou, G., Sølna, K.: Wave propagation and time reversal in randomly layered media, vol. 56 of Stochastic Modelling and Applied Probability. Springer, New York (2007)

  28. Garnier J., Papanicolaou G.: Passive sensor imaging using cross correlations of noisy signals in a scattering medium. SIAM J. Imaging Sci. 2(2), 396–437 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Greenleaf A., Seeger A.: Fourier integral operators with fold singularities. J. Reine Angew. Math. 455, 35–56 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Gross L.: Abstract Wiener spaces. In: Proceedings of Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), vol. II: Contributions to Probability Theory, Part 1, pp. 31–42. Univ. California Press, Berkeley (1967)

  31. Guillarmou C., Tzou L.: Calderón inverse problem with partial data on Riemann surfaces. Duke Math. J. 158(1), 83–120 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Helin T., Lassas M., Oksanen L.: An inverse problem for the wave equation with one measurement and the pseudorandom source. Anal. PDE 5(5), 887–912 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hida, T.: Analysis of Brownian Functionals. Carleton Univ., Ottawa, Ont., Carleton Mathematical Lecture Notes, No. 13 (1975)

  34. Hida, T., Kuo, H.-H., Potthoff, J., Streit, L.: White noise, vol. 253 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht (1993). An infinite-dimensional calculus

  35. Hörmander L.: Fourier integral operators. I. Acta Math. 127(1-2), 79–183 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hörmander, L.: The analysis of linear partial differential operators. IV, vol. 275 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1985)

  37. Hörmander, L.: The analysis of linear partial differential operators. I, vol. 256 of Grundlehren der Mathematischen Wissenschaften, 2nd edn. Springer, Berlin (1990)

  38. Imanuvilov O.Y., Yamamoto M.: Determination of a coefficient in an acoustic equation with a single measurement. Inverse Probl. 19(1), 157–171 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Isakov, V.: Inverse problems for partial differential equations, vol. 127 of Applied Mathematical Sciences, 2nd edn. Springer, New York (2006)

  40. Katchalov, A., Kurylev, Y., Lassas, M.: Inverse boundary spectral problems, vol. 123 of Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton (2001)

  41. Khoshnevisan D., Nualart E.: Level sets of the stochastic wave equation driven by a symmetric Lévy noise. Bernoulli 14(4), 899–925 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Kusuoka S.: The support property of a Gaussian white noise and its applications. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(2), 387–400 (1982)

    MathSciNet  MATH  Google Scholar 

  43. Lassas M., Päivärinta L., Saksman E.: Inverse scattering problem for a two dimensional random potential. Commun. Math. Phys. 279(3), 669–703 (2008)

    Article  MATH  ADS  Google Scholar 

  44. Lassas M., Taylor M., Uhlmann G.: The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary. Commun. Anal. Geom. 11(2), 207–221 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lassas M., Uhlmann G.: On determining a Riemannian manifold from the Dirichlet-to-Neumann map. Ann. Sci. École Norm. Sup. (4) 34(5), 771–787 (2001)

    MathSciNet  MATH  Google Scholar 

  46. Lee J.M., Uhlmann G.: Determining anisotropic real-analytic conductivities by boundary measurements. Commun. Pure Appl. Math. 42(8), 1097–1112 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  47. Löfström, J.: Interpolation of weighted spaces of differentiable functions on R d. Ann. Mat. Pura Appl. (4) 132, 189–214 (1982, 1983)

  48. Millet A., Sanz-Solé M.: A stochastic wave equation in two space dimension: smoothness of the law. Ann. Probab. 27(2), 803–844 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  49. Muhometov R.G., Romanov V.G.: On the problem of finding an isotropic Riemannian metric in an n-dimensional space. Dokl. Akad. Nauk SSSR 243(1), 41–44 (1978)

    MathSciNet  Google Scholar 

  50. Nachman A.I.: Global uniqueness for a two-dimensional inverse boundary value problem. Ann. Math. (2) 143(1), 71–96 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ondreját, M.: Existence of global mild and strong solutions to stochastic hyperbolic evolution equations driven by a spatially homogeneous Wiener process. J. Evol. Equ. 4(2), 169–191 (2004)

  52. Pestov L., Uhlmann G.: Two dimensional compact simple Riemannian manifolds are boundary distance rigid. Ann. Math. (2) 161(2), 1093–1110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. Peszat S.: The Cauchy problem for a nonlinear stochastic wave equation in any dimension. J. Evol. Equ. 2(3), 383–394 (2002)

    Article  MathSciNet  Google Scholar 

  54. : An inverse problem for a layered medium with a point source. Inverse Probl. 19(3), 497–506 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  55. Rakesh, Sacks P.: Uniqueness for a hyperbolic inverse problem with angular control on the coefficients. J. Inverse Ill-Posed Probl. 19(1), 107–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Ralston, J.: Gaussian beams and the propagation of singularities. In: Studies in Partial Differential Equations, vol. 23 of MAA Stud. Math., pp. 206–248. Math. Assoc. America, Washington, DC (1982)

  57. Sanz-Solé, M., Sü  A.: The stochastic wave equation in high dimensions: Malliavin differentiability and absolute continuity. Electron. J. Probab. 18(64), 1–28 (2013)

  58. Schwab C., Stuart A.M.: Sparse deterministic approximation of Bayesian inverse problems. Inverse Probl. 28(4), 045003–32 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  59. Stefanov P., Uhlmann G.: Local lens rigidity with incomplete data for a class of non-simple Riemannian manifolds. J. Differ. Geom.82(2), 383–409 (2009)

    MathSciNet  MATH  Google Scholar 

  60. Stefanov, P., Uhlmann, G.: Recovery of a source term or a speed with one measurement and applications. Trans. Amer. Math. Soc. 365(11), 5737–5758 (2013)

  61. Sylvester J.: An anisotropic inverse boundary value problem. Commun. Pure Appl. Math. 43(2), 201–232 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  62. Sylvester J., Uhlmann G.: A global uniqueness theorem for an inverse boundary value problem. Ann. Math. (2) 125(1), 153–169 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  63. Tataru D.: On the regularity of boundary traces for the wave equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26(1), 185–206 (1998)

    MathSciNet  MATH  Google Scholar 

  64. Toomay, J., Hannen, P.: Radar Principles for the NonSpecialist, 3rd edn. The SciTech radar and defence series. Institution of Engineering and Technology (2004)

  65. Uhlmann, G.: The Cauchy data and the scattering relation. In: Geometric Methods in Inverse Problems and PDE Control, vol. 137 of IMA Vol. Math. Appl., pp. 263–287. Springer, New York (2004)

  66. Vaĭnberg, B.R.: Asymptotic Methods in Equations of Mathematical Physics. Gordon & Breach Science Publishers, New York (1989)

  67. Yao H., VanDer Hilst R.D., De Hoop M.V.: Surface-wave array tomography in se tibet from ambient seismic noise and two-station analysis i. Phase velocity maps. Geophys. J. Int. 166(2), 732–744 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapio Helin.

Additional information

Communicated by S. Zelditch

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helin, T., Lassas, M. & Oksanen, L. Inverse Problem for the Wave Equation with a White Noise Source. Commun. Math. Phys. 332, 933–953 (2014). https://doi.org/10.1007/s00220-014-2115-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2115-9

Keywords

Navigation