Skip to main content
Log in

Solitons on Tori and Soliton Crystals

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Necessary conditions for a soliton on a torus \({M = \mathbb{R}^m/\Lambda}\) to be a soliton crystal, that is, a spatially periodic array of topological solitons in stable equilibrium, are derived. The stress tensor of the soliton must be L 2 orthogonal to \({\mathbb{E}}\) , the space of parallel symmetric bilinear forms on TM, and, further, a certain symmetric bilinear form on \({\mathbb{E}}\) , called the hessian, must be positive. It is shown that, for baby Skyrme models, the first condition actually implies the second. It is also shown that, for any choice of period lattice Λ, there is a baby Skyrme model which supports a soliton crystal of periodicity Λ. For the three-dimensional Skyrme model, it is shown that any soliton solution on a cubic lattice which satisfies a virial constraint and is equivariant with respect to (a subgroup of) the lattice symmetries automatically satisfies both tests. This verifies, in particular, that the celebrated Skyrme crystal of Castillejo et  al., and Kugler and Shtrikman, passes both tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adam C., Sánchez-Guillén J., Wereszczyński A.: A Skyrme-type proposal for baryonic matter. Phys. Lett. B691, 105–110 (2010)

    Article  ADS  Google Scholar 

  2. Adams R.A.: Sobolev Spaces. Academic Press, London (1975)

    MATH  Google Scholar 

  3. Baird, P., Eells, J.: A conservation law for harmonic maps. In: Geometry Symposium, Utrecht 1980 (Utrecht, 1980). Lecture Notes in Mathematics, vol. 894, pp. 1–25. Springer, Berlin (1981)

  4. Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds, vol. 29. London Mathematical Society Monographs. New Series Oxford University Press, Oxford (2003)

  5. Battye R.A., Sutcliffe P.M.: A Skyrme lattice with hexagonal symmetry. Phys. Lett. B416, 385–391 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Castillejo L., Jones P.S.J., Jackson A.D., Verbaarschot J.J.M., Jackson A.: Dense skyrmion systems. Nucl. Phys. A501, 801–812 (1989)

    Article  ADS  Google Scholar 

  7. Derrick G.H.: Comments on nonlinear wave equations as models for elementary particles. J. Math. Phys. 5, 1252–1254 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  8. Domokos S.K., Hoyos C., Sonnenschein J.: Deformation Constraints on Solitons and D-branes. J. High Energy Phys. 2013, 3 (2013)

    Article  MathSciNet  Google Scholar 

  9. Evans, L.C.: Weak convergence methods for nonlinear partial differential equations, vol. 74. In: CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1990)

  10. Jaykka J., Speight M., Sutcliffe P.: Broken baby Skyrmions. Proc. R. Soc. Lond. A468, 1085–1104 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  11. Jones H.F.: Groups, Representations and Physics. Adam Hilger, Bristol (1990)

    Book  MATH  Google Scholar 

  12. Kapitanski, L.: On Skyrme’s model. In: Nonlinear Problems in Mathematical Physics and Related Topics, II. International Mathematical Series (New York), vol. 2, pp. 229–241. Kluwer/Plenum, New York (2002)

  13. Karliner M., Hen I.: Rotational symmetry breaking in baby Skyrme models. In: Brown, G.E., Rho, M. (eds) The Multifaceted Skyrmion, pp. 179–213. World Scientific, Singapore (2010)

    Chapter  Google Scholar 

  14. Klebanov I.: Nuclear matter in the skyrme model. Nucl. Phys. B262, 133–143 (1985)

    Article  ADS  Google Scholar 

  15. Kugler M., Shtrikman S.: A new skyrmion crystal. Phys. Lett. B208, 491–494 (1988)

    Article  ADS  Google Scholar 

  16. Lawden D.F.: Elliptic Functions and Applications. Springer, London (1989)

    Book  MATH  Google Scholar 

  17. Lichnerowicz A.: Applications harmoniques et variétés kähleriennes. Symp. Math. Bologna 3, 341–402 (1970)

    ADS  Google Scholar 

  18. Lin F., Yang Y.: Existence of two-dimensional skyrmions via the concentration-compactness method. Comm. Pure Appl. Math. 57, 1332–1351 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Manton N.S.: Scaling identities for solitons beyond Derrick’s theorem. J. Math. Phys. 50, 032901 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. Manton N.S., Sutcliffe P.M.: Topological Solitons. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  21. Morrison T.J.: Functional Analysis. An Introduction to Banach Space Theory. Wiley, New York (2001)

    MATH  Google Scholar 

  22. Silva Lobo J., Ward R.S.: Skyrmion multi-walls. J. Phys. A42, 482001 (2009)

    MathSciNet  Google Scholar 

  23. Speight J.M.: Compactons and semi-compactons in the extreme baby Skyrme model. J. Phys. A43, 405201 (2010)

    MathSciNet  Google Scholar 

  24. Ward R.S.: Planar Skyrmions at high and low density. Nonlinearity 17, 1033–1040 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Speight.

Additional information

Communicated by P. T. Chruściel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Speight, J.M. Solitons on Tori and Soliton Crystals. Commun. Math. Phys. 332, 355–377 (2014). https://doi.org/10.1007/s00220-014-2104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2104-z

Keywords

Navigation