Skip to main content
Log in

The Hartree Equation for Infinitely Many Particles I. Well-Posedness Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show local and global well-posedness results for the Hartree equation

$$i\partial_t\gamma = [-\Delta + w * \rho_\gamma, \gamma],$$

where γ is a bounded self-adjoint operator on \({L^2(\mathbb{R}^d)}\) , ρ γ (x) = γ(x, x) and w is a smooth short-range interaction potential. The initial datum γ(0) is assumed to be a perturbation of a translation-invariant state γ f = f(−Δ) which describes a quantum system with an infinite number of particles, such as the Fermi sea at zero temperature, or the Fermi–Dirac and Bose–Einstein gases at positive temperature. Global well-posedness follows from the conservation of the relative (free) energy of the state γ(t), counted relatively to the stationary state γ f . We indeed use a general notion of relative entropy, which allows us to treat a wide class of stationary states f(−Δ). Our results are based on a Lieb–Thirring inequality at positive density and on a recent Strichartz inequality for orthonormal functions, which are both due to Frank, Lieb, Seiringer and the first author of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ammari Z., Nier F.: Mean field limit for bosons and infinite dimensional phase-space analysis. Annales Henri Poincaré 9, 1503–1574 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Araki H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19, 167–170 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Audenaert K., Hiai F., Petz D.: Strongly subadditive functions. Acta Mathematica Hungarica 128, 386–394 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bach V., Lieb E.H., Solovej J.P.: Generalized Hartree–Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–89 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Bardos C., Erdős L., Golse F., Mauser N., Yau H.-T.: Derivation of the Schrödinger–Poisson equation from the quantum N-body problem. C. R. Math. Acad. Sci. Paris 334, 515–520 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bardos C., Golse F., Gottlieb A.D., Mauser N.J.: Mean field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. 82(9), 665–683 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of Fermionic systems. Commun. Math. Phys. (2014). doi:10.1007/s00220-014-2031-z

  8. Bhatia R.: Matrix Analysis. Springer, Berlin (1997)

    Google Scholar 

  9. Bove A., Da Prato G., Fano G.: An existence proof for the Hartree–Fock time-dependent problem with bounded two-body interaction. Commun. Math. Phys. 37, 183–191 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bove A., Da Prato G., Fano G.: On the Hartree–Fock time-dependent problem. Commun. Math. Phys. 49, 25–33 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cancès E., Stoltz G.: A mathematical formulation of the random phase approximation for crystals. Ann. Inst. H. Poincaré C (Analyse non linéaire) 29, 887–925 (2012)

    Article  ADS  MATH  Google Scholar 

  12. Cazenave T.: Semilinear Schrödinger Equations, Vol. 10 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York (2003)

    Google Scholar 

  13. Chadam J.M.: The time-dependent Hartree–Fock equations with Coulomb two-body interaction. Commun. Math. Phys. 46, 99–104 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Elgart A., Erdős L., Schlein B., Yau H.-T.: Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. 83, 1241–1273 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Erdös L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5, 1169–1205 (2001)

    MATH  MathSciNet  Google Scholar 

  16. Frank R.L., Hainzl C., Seiringer R., Solovej J.P.: Microscopic derivation of Ginzburg–Landau theory. J. Amer. Math. Soc. 25, 667–713 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Frank R.L., Lewin M., Lieb E.H., Seiringer R.: Energy cost to make a hole in the Fermi sea. Phys. Rev. Lett. 106, 150402 (2011)

    Article  ADS  Google Scholar 

  18. Frank R.L., Lewin M., Lieb E.H., Seiringer R.: A positive density analogue of the Lieb–Thirring inequality. Duke Math. J. 162, 435–495 (2012)

    Article  MathSciNet  Google Scholar 

  19. Frank, R.L., Lewin, M., Lieb, E.H., Seiringer, R.: Strichartz inequality for orthonormal functions. J. Eur. Math. Soc. (JEMS), in press (2013)

  20. Fröhlich J., Knowles A.: A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145, 23–50 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Ginibre J., Velo G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. I. Commun. Math. Phys. 66, 37–76 (1979)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Griesemer M., Hantsch F.: Unique solutions to Hartree–Fock equations for closed shell atoms. Arch. Ration. Mech. Anal. 203, 883–900 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gulisashvili A., Kon M.A.: Exact smoothing properties of Schrödinger semigroups. Amer. J. Math. 118, 1215–1248 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  24. Hainzl C., Lewin M., Seiringer R.: A nonlinear model for relativistic electrons at positive temperature. Rev. Math. Phys. 20, 1283–1307 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hainzl C., Lewin M., Séré É.: Existence of a stable polarized vacuum in the Bogoliubov–Dirac–Fock approximation. Commun. Math. Phys. 257, 515–562 (2005)

    Article  ADS  MATH  Google Scholar 

  26. Hainzl C., Lewin M., Séré É.: Existence of atoms and molecules in the mean-field approximation of no-photon quantum electrodynamics. Arch. Ration. Mech. Anal. 192, 453–499 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hainzl C., Lewin M., Solovej J.P.: The mean-field approximation in quantum electrodynamics: the no-photon case. Comm. Pure Appl. Math. 60, 546–596 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hainzl C., Lewin M., Sparber C.: Existence of global-in-time solutions to a generalized Dirac–Fock type evolution equation. Lett. Math. Phys. 72, 99–113 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  30. Keel M., Tao T.: Endpoint Strichartz estimates. Amer. J. Math. 120, 955–980 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Knowles A., Pickl P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298, 101–138 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Lewin, M., Nam, P.T., Schlein, B.: Fluctuations around Hartree states in the mean-field regime. arXiv eprints, (2013)

  33. Lewin, M., Sabin, J.: A family of monotone quantum relative entropies. Lett. Math. Phys. 104, 691–705 (2014)

  34. Lewin, M., Sabin, J.: The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D. Anal. PDE (2014, in press)

  35. Lieb E.H., Thirring W.E.: Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and their Relation to Sobolev Inequalities, Studies in Mathematical Physics, pp. 269–303. Princeton University Press, Princeton (1976)

    Google Scholar 

  36. Ohya M., Petz D.: Quantum Entropy and its Use, Texts and Monographs in Physics. Springer-Verlag, Berlin (1993)

    Book  Google Scholar 

  37. Peierls R.E.: Quantum Theory of Solids, International Series of Monographs on Physics. Clarendon Press, Oxford (1955)

    Google Scholar 

  38. Pickl P.: A simple derivation of mean-field limits for quantum systems. Lett. Math. Phys. 97, 151–164 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Reed M., Simon B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press, New York (1972)

    Google Scholar 

  40. Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291, 31–61 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Sabin, J.: Stabilité, dispersion et création de paires pour certains systèmes quantiques infinis. PhD thesis, University of Cergy-Pontoise, France (2013)

  42. Seiler E., Simon B.: Bounds in the Yukawa 2 quantum field theory: upper bound on the pressure, Hamiltonian bound and linear lower bound. Commun. Math. Phys. 45, 99–114 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  43. Simon, B.: Trace Ideals and their Applications, Vol. 35 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (1979)

  44. Solovej J.P.: Proof of the ionization conjecture in a reduced Hartree–Fock model. Invent. Math. 104, 291–311 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Spohn H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Modern Phys. 52, 569–615 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  46. Strichartz R.S.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44, 705–714 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  47. Tao, T.: Nonlinear dispersive equations, In: Vol. 106 of CBMS Regional Conference Series in Mathematics, Published for the Conference Board of the Mathematical Sciences, Washington, DC, Local and global analysis (2006)

  48. Yajima K.: Existence of solutions for Schrödinger evolution equations. Commun. Math. Phys. 110, 415–426 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  49. Zagatti S.: The Cauchy problem for Hartree–Fock time-dependent equations. Ann. Inst. H. Poincaré Phys. Théor. 56, 357–374 (1992)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Lewin.

Additional information

Communicated by L. Erdös

Copyright © 2014 by the authors. This paper may be reproduced, in its entirety, for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewin, M., Sabin, J. The Hartree Equation for Infinitely Many Particles I. Well-Posedness Theory. Commun. Math. Phys. 334, 117–170 (2015). https://doi.org/10.1007/s00220-014-2098-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2098-6

Keywords

Navigation