Skip to main content
Log in

Complex Classical Fields: A Framework for Reflection Positivity

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We explore a framework for complex classical fields, appropriate for describing quantum field theories. Our fields are linear transformations on a Hilbert space, so they are more general than random variables for a probability measure. Our method generalizes Osterwalder and Schrader’s construction of Euclidean fields. We allow complex-valued classical fields in the case of quantum field theories that describe neutral particles.

From an analytic point-of-view, the key to using our method is reflection positivity. We investigate conditions on the Fourier representation of the fields to ensure that reflection positivity holds. We also show how reflection positivity is preserved by various spacetime compactifications of \({\mathbb{R}^{d}}\) in different coordinate directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balaban, T., Feldman, J., Knörrer, H., Trubowitz, E.: The temporal ultraviolet limit. In: Fröhlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W., Cugliandolo, L.F. (eds.) Quantum Theory from Small to Large Scales. Lecture Notes of the Les Houches Summer School: vol. 5, August 2010. Oxford University Press, Oxford (2012)

  2. Biskup, M.: Reflection positivity and phase transitions for lattice models. In: Roman, K. (ed.) Methods of Contemporary Mathematical Statistical Physics. Lecture Notes in Mathematics, Springer, Berlin (2009)

  3. Borchers H., Yngvason J.: Necessary and sufficient conditions for integral representations of Wightman functionals at Schwinger points. Commun. Math. Phys. 47, 197–213 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Brydges D.C., Imbrie J.Z.: Green’s function for a hierarchical self-avoiding walk in four dimensions. Commun. Math. Phys. 239, 549–584 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Gelfand I.M., Vilenkin N.Ya.: Generalized Functions, vol. 4. Academic Press (HBJ Publishers), New York (1964)

    Google Scholar 

  6. Glimm J., Jaffe A.: Quantum Physics, A Functional Point of View. Springer, New York (1981)

    MATH  Google Scholar 

  7. Glimm J., Jaffe A., Spencer T.: The Wightman axioms and particle structure in the P(ϕ)2 quantum field model. Ann. Math. 100, 585–632 (1974)

    Article  MathSciNet  Google Scholar 

  8. Heifets E.P., Osipov E.P.: The energy-momentum spectrum in the P(φ)2 quantum field theory. Commun. Math. Phys. 56, 161–172 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Jaffe A., Jäkel C., Martinez R.: Complex classical fields: an example. J. Funct. Anal. 266, 1833–1881 (2014)

    Article  MathSciNet  Google Scholar 

  10. Jørgensen, P.E.T., Ólafsson, G.: Unitary representations and Osterwalder–Schrader duality. In: Doran, R., Varadarajan, V. (eds.) The Mathematical Legacy of Harish–Chandra: A Celebration of Representation Theory and Harmonic Analysis, Proceedings of the Symposium in Pure Mathematics, vol. 68, pp. 333–401. American Mathematical Society, Providence (2000)

  11. Minlos R.A.: Generalized stochastic processes and their extension to a measure. Trudy Mosk. Mat. Obs. 8, 497–518 (1959)

    MathSciNet  Google Scholar 

  12. Nelson E.: Construction of quantum fields from Markoff fields. J. Funct. Anal. 12, 97–112 (1973)

    Article  MATH  Google Scholar 

  13. Nelson E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973)

    Article  MATH  Google Scholar 

  14. Nelson E.: Analytic vectors. Ann. Math. 70, 572–615 (1959)

    Article  MATH  Google Scholar 

  15. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions II. Commun. Math. Phys. 42, 281–305 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Osterwalder K., Schrader R.: Euclidean Fermi fields and a Feynman-Kac formula for boson-fermion interactions. Helv. Phys. Acta 46, 227–302 (1973)

    MathSciNet  Google Scholar 

  18. Symanzik, K.: A modified model of Euclidean quantum field theory, Courant Institute of Mathematical Sciences Report IMM-NYU 327, June 1964, and Euclidean quantum field theory. In: Jost, R. (ed.) Local Quantum Theory, Varenna Lectures 1968, pp. 152–226. Academic Press, New York (1969)

  19. Yngvason J.: Euclidean invariant integral representations for Schwinger functionals. J. Math. Phys. 27(1), 311–320 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  20. Zinoviev Y.: Equivalence of Euclidean and Wightman field theories. Commun. Math. Phys. 174, 1–27 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Jaffe.

Additional information

Communicated by Y. Kawahigashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffe, A., Jäkel, C.D. & Martinez, R.E. Complex Classical Fields: A Framework for Reflection Positivity. Commun. Math. Phys. 329, 1–28 (2014). https://doi.org/10.1007/s00220-014-2040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2040-y

Keywords

Navigation