Advertisement

Communications in Mathematical Physics

, Volume 330, Issue 1, pp 367–399 | Cite as

Bruhat Order in Full Symmetric Toda System

  • Yu. B. ChernyakovEmail author
  • G. I. Sharygin
  • A. S. Sorin
Article

Abstract

In this paper we discuss some geometrical and topological properties of the full symmetric Toda system. We show by a direct inspection that the phase transition diagram for the full symmetric Toda system in dimensions n = 3, 4 coincides with the Hasse diagram of the Bruhat order of symmetric groups S 3 and S 4. The method we use is based on the existence of a vast collection of invariant subvarieties of the Toda flow in orthogonal groups. We show how one can extend it to the case of general n. The resulting theorem identifies the set of singular points of dim = n Toda flow with the elements of the permutation group S n , so that points will be connected by a trajectory, if and only if the corresponding elements are Bruhat comparable. We also show that the dimension of the submanifolds, spanned by the trajectories connecting two singular points, is equal to the length of the corresponding segment in the Hasse diagram. This is equivalent to the fact that the full symmetric Toda system is in fact a Morse–Smale system.

Keywords

Singular Point Phase Portrait Weyl Group Morse Theory Morse Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flaschka H.: The Toda lattice. I. Existence of integrals. Phys. Rev. B 9(4), 1924–1925 (1974)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Toda M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22(2), 431–436 (1967)ADSCrossRefGoogle Scholar
  3. 3.
    Toda M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Jpn. 23(3), 501–506 (1967)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Henon M.: Integrals of the Toda lattice. Phys. Rev. B9, 1921–1923 (1974)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Flaschka H.: On the Toda lattice. II. Prog. Theor. Phys. 51(3), 703–716 (1974)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Moser, J.: Finitely many mass points on the line under the influence of an exponential potential—an integrable system. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecturer Notes in Physics, vol. 38, pp. 467–497. Springer, Berlin (1975)Google Scholar
  7. 7.
    Deift P., Nanda T., Tomei C.: Ordinary differential equations and the symmetric eigenvalue problem. SIAM J. Numer. Anal. 20, 1–20 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Moser J.: Integrable Hamiltonian Systems and Spectral Theory. Lezioni Fermiane, Pisa (1981)zbMATHGoogle Scholar
  9. 9.
    Kodama Y., McLaughlin K.T.-R.: Explicit integration of the full symmetric Toda hierarchy and the sorting property. Lett. Math. Phys. 37, 37–47 (1996)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Fre, P., Sorin, A.S.: The arrow of time and the Weyl group: all supergravity billiards are integrable. Nucl. Phys. B 815, 430 (2009). [ arXiv:0710.1059]
  11. 11.
    Fre, P., Sorin, A.S.: Integrability of supergravity billiards and the generalized Toda lattice equation. Nucl. Phys. B 733, 334 (2006). [ hep-th/0510156]
  12. 12.
    Arhangelskii A.A.: Completely integrable hamiltonian systems on a group of triangular matrices. Math. USSR Sb. 36(1), 127–134 (1980)CrossRefGoogle Scholar
  13. 13.
    Adler M.: On a trace functional for pseudo-differential operators and the symplectic structure of the Korteweg–de Vries equation. Invent. Math. 50, 219–248 (1979)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Kostant B.: The solution to a generalized Toda lattice and representation theory. Adv. Math. 34, 195–338 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Symes W.W.: Systems of Toda type, inverse spectral problems, and representation theory. Invent. Math. 59(1), 13–51 (1980)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Deift P., Li L.C., Nanda T., Tomei C.: The Toda flow on a generic orbit is integrable. CPAM 39, 183–232 (1986)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Chernyakov, Yu.B., Sorin, A.S.: Semi-invariants and Integrals of the Full Symmetric sl(n) Toda Lattice [ arXiv:1312.4555]
  18. 18.
    De Mari F., Pedroni M.: Toda flows and real Hessenberg manifolds. J. Geom. Anal. 9(4), 607–625 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Ercolani, N., Flaschka, H., Singer, S.: The geometry of the full Kostant–Toda lattice In: Integrable Systems. Progress in Mathematics, vol. 115, pp. 181–226. Birkhauser, Basel (1993)Google Scholar
  20. 20.
    Bloch A.: Steepest descent, linear programming and gradient flow. Contemp. Math. AMS 114, 77–88 (1980)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Bloch A.M., Brockett R.W., Ratiu T.S.: A new formulation of the generalized Toda lattice equations and their fixed point analysis via the momentum map. Bull. Am. Math. Soc. (N.S.) 23(2), 477–485 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Bloch A.M., Gekhtman M.: Hamiltonian and gradient structures in the Toda flows. J. Geom. Phys. 27, 230–248 (1998)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Fulton W.: Young Tableaux. Cambridge University Press, London (1997)zbMATHGoogle Scholar
  24. 24.
    Ulfarsson, H., Woo, A.: Which Schubert varieties are local complete intersections? Proc. Lond. Math. Soc. 107(5), 1004–1052 (2013)Google Scholar
  25. 25.
    Bloch A.M., Brockett R.W., Ratiu T.S.: Completely integrable gradient flows. Commun. Math. Phys. 147, 57–74 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Billey, S., Lakshmibai, V.: Singular loci of Schubert varieties. Progress in Mathematics, vol. 182. Birkhauser, Boston (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yu. B. Chernyakov
    • 1
    • 2
    Email author
  • G. I. Sharygin
    • 1
    • 2
    • 3
    • 4
  • A. S. Sorin
    • 2
  1. 1.Institute for Theoretical and Experimental PhysicsMoscowRussia
  2. 2.Bogoliubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  3. 3.Faculty of Mechanics and Mathematics, Lomonosov Moscow State UniversityMoscowRussia
  4. 4.Laboratory of Discrete and Computational GeometryYaroslavl’ State UniversityYaroslavl’Russia

Personalised recommendations