Skip to main content

Advertisement

Log in

Phase Transition and Semi-Global Reducibility

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

For 1D continuous Schödinger operators with large analytic quasi-periodic potentials of two frequencies, one knows that the spectral measure is singular at the bottom of the spectrum and purely absolutely continuous in the upper part of the spectrum, so there is a phase transition when energy increases. In this paper, we obtain the exact power-law for the phase transition in energy by the semi-global reducibility theory of analytic quasi-periodic linear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila, A.: Absolutely continuous spectrum for the almost Mathieu operator with subcritical coupling. http://w3.impa.br/~avila/

  2. Avila, A.: Almost reducibility and absolute continuity I. http://w3.impa.br/~avila/

  3. Avila, A.: Almost reducibility and absolute continuity II (in preparation).

  4. Avila, A.: Global theory of one-frequency Schrödinger operators I: stratified analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity (2009). arXiv:0905.3902[math.DS]

  5. Avila, A.: Global theory of one-frequency Schrödinger operators II: acriticality and finiteness of phase transitions for typical potentials. http://w3.impa.br/~avila/

  6. Avila A., Damanik D.: Absolute continuity of the integrated density of states for the almost Mathieu operator with non-critical coupling. Invent. Math. 172, 439–453 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Avila A., Fayad B., Krikorian R.: A KAM scheme for \({{\rm SL}(2,\mathbb{R})}\) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21, 1001–1019 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Avila A., Jitomirskaya S.: Almost localization and almost reducibility. J. Eur. Math. Soc. 12, 93–131 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Avila A., Krikorian R.: Reducibility or non-uniform hyperbolicity for quasiperiodic Schrödinger cocycles. Ann. Math. 164, 911–940 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bjerklöv K.: Positive Lyapunonv exponents for continuous quasiperiodic Schrödinger equations. J. Math. Phys. 47, 022702 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bjerklöv K.: Explicit examples of arbitrary large analytic ergodic potentials with zero Lyapunov exponent. Geom. Funct. Anal. 16, 1183–1200 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bjerklöv K.: Positive lyapunov exponent and minimality for the continuous 1-d quasi-periodic Schrödinger equation with two basic frequencies. Ann Henri Poincaré 8, 687–730 (2007)

    Article  ADS  MATH  Google Scholar 

  13. Bjerklöv, K., Krikorian, R.: Coexistence of ac and pp spectrum for quasiperiodic 1D Schrödinger operators (in preparation).

  14. Bourgain, J.: On the spectrum of lattice Schrodinger operators with deterministic potential. II. J. Anal. Math. 88, 221–254 (2002). (Dedicated to the memory of Tom Wolff)

    Google Scholar 

  15. Bourgain J., Goldstein M.: On nonperturbative localization with quasiperiodic potentials. Ann. Math. 152, 835–879 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dias J.L.: A normal form theorem for Brjuno skew systems through renormalization. J. Differ. Equ. 230, 1–23 (2006)

    Article  ADS  MATH  Google Scholar 

  17. Dinaburg E., Sinai Ya.: The one-dimensional Schrödinger equation with a quasi-periodic potential. Funct. Anal. Appl. 9, 279–289 (1975)

    Article  MathSciNet  Google Scholar 

  18. Eliasson L.H.: Floquet solutions for the one-dimensional quasiperiodic Schrödinger equation. Commum. Math. Phys. 146, 447–482 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Fayad B., Krikorian R.: Rigitidy results for quasiperiodic \({{\rm SL}(2,\mathbb{R})}\) -cocycles. J. Mod. Dyn. 3, 479–510 (2009)

    MATH  MathSciNet  Google Scholar 

  20. Fröhlich J., Spencer T., Wittwer P.: Localization for a class of one dimensional quasiperiodic Schrödinger operators. Commun. Math. Phys. 132, 5–25 (1990)

    Article  ADS  MATH  Google Scholar 

  21. Hou X., You J.: Almost reducibility and non-perturbative reducibility of quasiperiodic linear systems. Invent. Math. 190, 209–260 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Jitomirskaya S.: Metal-insulator transition for the almost Mathieu operator. Ann. Math. 150, 1159–1175 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Johnson R., Moser J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84, 403–438 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Kotani, S.: Lyaponov indices determine absolutely continuous spectra of stationary random onedimensional Schrondinger operators. In: Ito, K. (ed.) Stochastic Analysis, pp. 225–248. North Holland, Amsterdam (1984)

  25. Krikorian, R., You J., Zhou, Q.: Non-uniformly hyperbolic quasi-periodic systems with two frequencies in the perturbative region (in preparation).

  26. Puig J.: A nonperturbative Eliasson’s reducibility theorem. Nonlinearity 19, 355–376 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Puig J., Simó C.: Resonance tongues and spectral gaps in quasi-periodic Schröinger operators with one or more frequencies: a numerical exploration. J. Dyn. Diff. Equ. 23, 649–669 (2011)

    Article  MATH  Google Scholar 

  28. Sorets E., Spencer T.: Positive lyapunov exponents for Schrödinger operators with quasi-periodic potentials. Commun. Math. Phys. 142, 543–566 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. You J., Zhou Q.: Embedding of analytic quasi-periodic cocycles into analytic quasi-periodic linear systems and its applications. Commun. Math. Phys. 323, 975–1005 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhou.

Additional information

Communicated by B. Simon

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, J., Zhou, Q. Phase Transition and Semi-Global Reducibility. Commun. Math. Phys. 330, 1095–1113 (2014). https://doi.org/10.1007/s00220-014-2012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2012-2

Keywords

Navigation