Advertisement

Communications in Mathematical Physics

, Volume 330, Issue 1, pp 153–215 | Cite as

Universality of One-Dimensional Fermi Systems, I. Response Functions and Critical Exponents

  • G. Benfatto
  • P. Falco
  • V. MastropietroEmail author
Article

Abstract

The critical behavior of one-dimensional interacting Fermi systems is expected to display universality features, called Luttinger liquid behavior. Critical exponents and certain thermodynamic quantities are expected to be related among each other by model-independent formulas. We establish such relations, the proof of which has represented a challenging mathematical problem, for a general model of spinning fermions on a one dimensional lattice; interactions are short ranged and satisfy a positivity condition which makes the model critical at zero temperature. Proofs are reported in two papers: in the present one, we demonstrate that the zero temperature response functions in the thermodynamic limit are Borel summable and have anomalous power-law decay with multiplicative logarithmic corrections. Critical exponents are expressed in terms of convergent expansions and depend on all the model details. All results are valid for the special case of the Hubbard model.

Keywords

Critical Exponent Thermodynamic Limit Hubbard Model Renormalization Constant Density Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feldman Knörrer J.H., Trubowitz E.: A two dimensional fermi liquid. Commun. Math. Phys. 247, 1–319 (2004)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Giuliani A., Mastropietro V.: The 2D Hubbard model on the honeycomb lattice. Commun. Math. Phys. 293, 301–346 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Anderson P.W.: The Theory of Superconductivity in the High-Tc Cuprate Superconductors. Princeton University Press, Princeton (1997)Google Scholar
  4. 4.
    Haldane F.D.M.: General relation of correlarion exponents and application to the anisotropic S=1/2 Heisenberg chain. Phys. Rev. Lett. 45, 1358–1362 (1980)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    Kadanoff L.P., Wegner F.J.: Some critical properties of the Eight-Vertex Model. Phys. Rev. B 4, 3989–3993 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    Luther A., Peschel I.: Calculation of critical exponents in two dimensions from quantum field theory in one dimension. Phys. Rev. B 12, 3908–3917 (1975)ADSCrossRefGoogle Scholar
  7. 7.
    Mattis D., Lieb E.H.: Exact solution of a many fermion system and its associated boson field. J. Math. Phys. 6, 304–3129 (1965)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Haldane F.D.M.: Luttinger liquid theory of one-dimensional quantum fluids: I. properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C 14, 2585–2609 (1981)ADSCrossRefGoogle Scholar
  9. 9.
    Sólyom J.: The Fermi gas model of one-dimensional conductors. Adv. Phys. 28, 201–303 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    Pereira, R.G., White, S.R., Affleck, I.: Spectral function of spless fermions on a one-dimensional lattice. Phys. Rev. B 79 (2009)Google Scholar
  11. 11.
    Benfatto G., Mastropietro V.: On the density–density critical indices in interacting Fermi systems. Commun. Math. Phys. 231, 97–134 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Benfatto G., Mastropietro V.: Ward identities and chiral anomaly in the Luttinger liquid. Commun. Math. Phys. 258, 609–655 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Benfatto G., Gallavotti G., Procacci A., Scoppola B.: Beta functions and Schwinger functions for a many fermions system in one dimension. Commun. Math. Phys. 160, 93–171 (1994)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Benfatto G., Mastropietro V.: Universality relations in non-solvable quantum spin chains. J. Stat. Phys. 138, 1084–1108 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Benfatto G., Falco P., Mastropietro V.: Universal relations for nonsolvable statistical models. Phys. Rev. Lett. 104, 075701 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Giamarchi T.: Quantum Physics in One Dimension. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  17. 17.
    Tsvelik A.M.: Quantum Field Theory of Condensed Matter Physics. Cambridge University Press, Cambridge (2007)Google Scholar
  18. 18.
    Benfatto, G., Falco, P., Mastropietro, V. Universality of one-dimensional Fermi systems, II. The Luttinger liquid structure. Commun. Math. Phys. (2014). doi: 10.1007/s00220-014-2009-x
  19. 19.
    Lieb E.H., Wu F.Y.: Absence of Mott transition in the 1D Hubbard model. Phys. Rev. Lett. 20, 1445–1449 (1968)ADSCrossRefGoogle Scholar
  20. 20.
    Mattis D.: Band theory of magnetism in metals in context of exactly soluble models. Physics 1, 183–193 (1964)Google Scholar
  21. 21.
    Benfatto G., Mastropietro V.: Renormalization group, hidden symmetries and approximate Ward identities in the XYZ model. Rev. Math. Phys. 13, 1323–1435 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Benfatto G., Falco P., Mastropietro V.: Functional integral construction of the massive Thirring model: verification of axioms and massless limit. Commun. Math. Phys. 273, 67–118 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Brydges David, C.: A short course on cluster expansions. In: Phénomènes critiques, systèmes aléatoires, théories de jauge, (Les Houches, 1984), pp. 129–183. North-Holland, Amsterdam (1986)Google Scholar
  24. 24.
    Lesniewski A.: Effective action for the Yukawa2 quantum field theory. Commun. Math. Phys. 108, 437–467 (1987)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    Mastropietro V.: Rigorous proof of Luttinger liquid behavior in the 1d Hubbard model. J. Stat. Phys. 121, 373–432 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Giuliani A., Mastropietro V.: Anomalous universality in the anisotropic Ashkin–Teller model. Commun. Math. Phys. 256, 681–735 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Mastropietro V.: The absence of logarithmic divergences in the spin and charge density correlations of the 1d Hubbard model. J. Phys. A 40, 3347–3368 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Hardy G.: Divergent Series. Oxford University Press, London (1949)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomeItaly
  2. 2.Department of MathematicsCalifornia State universityNorthridgeUSA
  3. 3.Diparimento di Matematica F.EnriquezUniversità di MilanoMilanItaly

Personalised recommendations