Skip to main content
Log in

Connectivity Patterns in Loop Percolation I: the Rationality Phenomenon and Constant Term Identities

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Loop percolation, also known as the dense O(1) loop model, is a variant of critical bond percolation in the square lattice \({\mathbb{Z}^2}\) whose graph structure consists of a disjoint union of cycles. We study its connectivity pattern, which is a random noncrossing matching associated with a loop percolation configuration. These connectivity patterns exhibit a striking rationality property whereby probabilities of naturally-occurring events are dyadic rational numbers or rational functions of a size parameter n, but the reasons for this are not completely understood. We prove the rationality phenomenon in a few cases and prove an explicit formula expressing the probabilities in the “cylindrical geometry” as coefficients in certain multivariate polynomials. This reduces the rationality problem in the general case to that of proving a family of conjectural constant term identities generalizing an identity due to Di Francesco and Zinn-Justin. Our results make use of, and extend, algebraic techniques related to the quantum Knizhnik-Zamolodchikov equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews G.E.: Plane partitions V: the TSSCPP conjecture. J. Combin. Theory Ser. A 66, 28–39 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrews G.E., Burge W.H.: Determinant identities. Pac. J. Math. 158, 1–14 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Batchelor M., de Gier J., Nienhuis B.: The quantum symmetric XXZ chain at \({\Delta = -1/2}\), alternating-sign matrices and plane partitions. J. Phys. A 34, L265–L270 (2001)

    Article  ADS  MATH  Google Scholar 

  4. Bressoud D.M.: Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  5. Cantini L., Sportiello A.: Proof of the Razumov-Stroganov conjecture. J. Comb. Theory Ser. A 118, 1549–1574 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Di Francesco, P., Zinn-Justin, P., Zuber, J.-B.: Sum rules for the ground states of the O(1) loop model on a cylinder and the XXZ spin chain. J. Stat. Mech. P08011 (2006)

  7. Dyson F.: Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3, 140–156 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Feigin B., Jimbo M., Miwa T., Mukhin E.: Symmetric polynomials vanishing on the shifted diagonals and Macdonald polynomials. Int. Math. Res. Not. 2003, 1015–1034 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Gier J.: Loops, matchings and alternating-sign matrices. Discrete Math. 298, 365–388 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. de Gier J., Lascoux A., Sorrell M.: Deformed Kazhdan-Lusztig elements and Macdonald polynomials. J. Combin. Theory Ser. A 119, 183–211 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fonseca T., Zinn-Justin P.: On the doubly refined enumeration of alternating sign matrices and totally symmetric self-complementary plane partitions. Electron. J. Combin. 15, R81 (2008)

    MathSciNet  Google Scholar 

  12. Fonseca, T., Zinn-Justin, P.: On some ground state components of the O(1) loop model. J. Stat. Mech. Theory Exp. P03025 (2009)

  13. Good J.I.: Short proof of a conjecture of Dyson. J. Math. Phys. 11, 1884 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  14. Grimmett G.: Percolation, 2nd edn. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  15. Gunson J.: Proof of a conjecture of Dyson in the statistical theory of energy levels. J. Math. Phys. 3, 752–753 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Kasatani M.: Subrepresentations in the polynomial representation of the double affine Hecke algebra of type GL n at t k+1 q r-1 =  1. Int. Math. Res. Not. 2005, 1717–1742 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Krattenthaler C.: Determinant identities and a generalization of the number of totally symmetric self-complementary plane partitions. Electron. J. Combin. 4, R27 (1997)

    MathSciNet  Google Scholar 

  18. Kuperberg G.: Another proof of the alternating sign matrix conjecture. Internat. Math. Res. Notes 1996, 139–150 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lawler, G.F., Schramm, O., Werner, W.: One-arm exponent for critical 2D percolation. Electron. J. Probab. 7(2) (2002)

  20. Mills W.H., Robbins D.P., Rumsey H.: Alternating sign matrices and descending plane partitions. J. Combin. Theory Ser. A 34, 340–359 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mitra, S., Nienhuis, B., de Gier, J., Batchelor, M.T.: Exact expressions for correlations in the ground state of the dense O(1) loop model. J. Stat. Mech. Theory Exp. P09010 (2004)

  22. Okada S.: Enumeration of symmetry classes of alternating sign matrices and characters of classical groups. J. Algebraic Combin. 23, 43–69 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Pasquier V.: Quantum incompressibility and Razumov-Stroganov type conjectures. Ann. Henri Poincaré 7, 397–421 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Pearce P.A., Rittenberg V., de Gier J., Nienhuis B.: Temperley-Lieb stochastic processes. J. Phys. A. 35, L661–L668 (2002)

    Article  ADS  MATH  Google Scholar 

  25. Propp, J.: The many faces of alternating sign matrices. Discrete Mathematics and Theoretical Computer Science. In: Proceedings of DM-CCG, Conference Volume AA, pp. 43–58 (2001)

  26. Razumov A.V., Stroganov Yu.G.: Combinatorial nature of ground state vector of O(1) loop model. Theor. Math. Phys. 138, 333–337 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Romik, D.: Connectivity patterns in loop percolation II: pipe percolation, in preparation

  28. Sills A.V., Zeilberger D.: Disturbing the Dyson conjecture (in a GOOD way). Exp. Math. 15, 187–191 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  29. Smirnov S.: Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333, 239–244 (2001)

    Article  ADS  MATH  Google Scholar 

  30. Stroganov Yu.: Izergin-Korepin determinant at a third root of unity. Theor. Math. Phys. 146, 53–62 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Temperley N., Lieb E.: Relations between the percolation and colouring problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the percolation problem. Proc. R. Soc. A 322, 251–280 (1971)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Wieland B.: A large dihedral symmetry of the set of alternating sign matrices. Electron. J. Combin. 7, R37 (2000)

    MathSciNet  Google Scholar 

  33. Wilson K.: Proof of a conjecture by Dyson. J. Math. Phys. 3, 1040–1043 (1962)

    Article  ADS  MATH  Google Scholar 

  34. Zeilberger D.: Proof of the alternating sign matrix conjecture. Electron. J. Combin. 3, R13 (1996)

    MathSciNet  Google Scholar 

  35. Zeilberger, D.: Proof of a conjecture of Philippe Di Francesco and Paul Zinn-Justin related to the qKZ equations and to Dave Robbins’ two favorite combinatorial objects. Preprint (2007). http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/diFrancesco.pdf

  36. Zinn-Justin, P.: Six-vertex, loop and tiling models: integrability and combinatorics. Habilitation thesis, arXiv:0901.0665

  37. Zinn-Justin P., Di Francesco P.: Around the Razumov-Stroganov conjecture: proof of a multi-parameter sum rule. Electron. J. Combin. 12, R6 (2005)

    MathSciNet  Google Scholar 

  38. Zinn-Justin P., Di Francesco P.: Quantum Knizhnik-Zamolodchikov equation, totally symmetric self-complementary plane partitions and alternating sign matrices. Theor. Math. Phys. 154, 331–348 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Zuber J.-B.: On the counting of fully packed loop configurations: some new conjectures. Electron. J. Combin. 11, R13 (2004)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Romik.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romik, D. Connectivity Patterns in Loop Percolation I: the Rationality Phenomenon and Constant Term Identities. Commun. Math. Phys. 330, 499–538 (2014). https://doi.org/10.1007/s00220-014-2001-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-2001-5

Keywords

Navigation