Advertisement

Communications in Mathematical Physics

, Volume 330, Issue 1, pp 33–43 | Cite as

A Gibbons–Penrose Inequality for Surfaces in Schwarzschild Spacetime

  • Simon Brendle
  • Mu-Tao WangEmail author
Article

Abstract

We propose a geometric inequality for two-dimensional spacelike surfaces in the Schwarzschild spacetime. This inequality implies the Penrose inequality for collapsing dust shells in general relativity, as proposed by Penrose and Gibbons. We prove that the inequality holds in several important cases.

Keywords

Fundamental Form Minkowski Spacetime Curvature Vector Spacelike Hypersurface Null Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bray H.: Proof of the Riemannian Penrose inequality using the positive mass theorem. J. Differ. Geom. 59, 177–267 (2001)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Brendle S.: Constant mean curvature surfaces in warped product manifolds. Publications Mathématiques de l’IHÉS 117, 247–269 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brendle, S., Hung, P.-K., Wang, M.-T.: A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold ( arxiv:1209.0669)
  4. 4.
    Gibbons, G.W.: Ph.D. thesis, Cambridge University (1973)Google Scholar
  5. 5.
    Gibbons G.W.: Collapsing shells and the isoperimetric inequality for black holes. Class. Quantum Grav. 14, 2905–2915 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Guan P., Li J.: The quermassintegral inequalities for k-convex starshaped domains. Adv. Math. 221, 1725–1732 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Huisken, G.: in preparationGoogle Scholar
  8. 8.
    Huisken G., Ilmanen T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differ. Geom. 59, 353–437 (2001)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Mars, M.: Present status of the Penrose inequality. Class. Quantum Grav. 26, 193001, 59 pp (2009)Google Scholar
  10. 10.
    Mars M., Soria A.: On the Penrose inequality for dust null shells in the Minkowski spacetime of arbitrary dimension. Class. Quantum Grav. 29, 135005 (2012)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Penrose R.: Naked singularities. Ann. New York Acad. Sci. 224, 125–134 (1973)ADSCrossRefGoogle Scholar
  12. 12.
    Tod K.P.: Penrose quasilocal mass and the isoperimetric inequality for static black holes. Class Quantum Grav. 2, L65–L68 (1985)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Tod K.P.: More on Penrose’s quasilocal mass. Class Quantum Grav. 3, 1169–1189 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Tod K.P.: The hoop conjecture and the Gibbons–Penrose construction of trapped surfaces. Class. Quantum Grav. 9(6), 1581–1591 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Wang, M.-T.: Quasilocal mass and surface Hamiltonian in spacetime. (arxiv:1211.1407)
  16. 16.
    Wang M.-T., Yau S.-T.: Quasilocal mass in general relativity. Phys. Rev. Lett. 102(2), 021101 (2009)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wang M.-T., Yau S.-T.: Isometric embeddings into the Minkowski space and new quasi-local mass. Commun. Math. Phys. 288(3), 919–942 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA

Personalised recommendations