Advertisement

Communications in Mathematical Physics

, Volume 330, Issue 3, pp 1021–1094 | Cite as

Global Stability of the Normal State of Superconductors in the Presence of a Strong Electric Current

  • Yaniv AlmogEmail author
  • Bernard Helffer
Article

Abstract

We consider the time-dependent Ginzburg–Landau model of superconductivity in the presence of an electric current flowing through a two-dimensional wire. We show that when the current is sufficiently strong the solution converges in the long-time limit to the normal state. We provide two types of upper bounds for the critical current where such global stability is achieved: by using the principal eigenvalue of the magnetic Laplacian associated with the normal magnetic field, and through the norm of the resolvent of the linearized steady-state operator. In the latter case we estimate the resolvent norm in large domains by the norms of approximate operators defined on the plane and the half-plane. We also obtain a lower bound, in large domains, for the above critical current by obtaining the current for which the normal state looses its local stability.

Keywords

Weak Solution Global Existence Critical Current Global Stability Variational Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almog Y.: The stability of the normal state of superconductors in the presence of electric currents. SIAM J. Math. Anal. 40, 824–850 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Almog Y., Helffer B., Pan X.-B.: Superconductivity near the normal state under the action of electric currents and induced magnetic fields in \({\mathbb R^2}\) . Commun. Math. Phys. 300, 147–184 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Almog Y., Helffer B., Pan X.-B.: Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field, Part II: The large conductivity limit. SIAM J. Math. Anal. 44, 3671–3733 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Almog Y., Helffer B., Pan X.-B.: Superconductivity near the normal state in a half-plane under the action of a perpendicular electric current and an induced magnetic field. Trans. Am. Math. Soc. 365, 1183–1217 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bender, C.M., Jones, H.F.: WKB analysis of PT-symmetric Sturm–Liouville problems. J. Phys. A-Math. Theor. 45, 444004 (2012)Google Scholar
  6. 6.
    Bonnaillie-Noël V., Dauge M.: Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners. Ann. Henri Poincaré 7, 899–931 (2006)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen Z.M., Hoffmann K.-H., Liang J.: On a nonstationary Ginzburg-Landau superconductivity model. Math. Methods Appl. Sci. 16, 855–875 (1993)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Davies, E.B.: Linear operators and their spectra. In: Cambridge studies in advanced mathematics, Vol. 106, Cambridge: Cambridge University Press, 2007Google Scholar
  9. 9.
    Du Q.: Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity. Appl. Anal. 53, 1–17 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Engel, K.J., Nagel, R.: One-parameter semigroups for linear evolution equations. In: Graduate texts in Mathematics, Vol. 194, New York: Springer-Verlag, 2000Google Scholar
  11. 11.
    Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics, vol. 19, Providence: AMS, 1998Google Scholar
  12. 12.
    Feireisl E., Takáč P.: Long-time stabilization of solutions to the Ginzburg-Landau equations of superconductivity. Monatsh. Math. 133, 197–221 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Fleckinger-Pellé J., Kaper H.G., Takáč P.: Dynamics of the Ginzburg–Landau equations of superconductivity. Nonlinear Anal. {\bf 32caron;, 647–665 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Fournais, S., Helffer, B.: Spectral methods in surface superconductivity. Progress in Nonlinear Differential Equations and their Applications, vol. 77, Boston: Birkhäuser, 2010Google Scholar
  15. 15.
    Giorgi T., Philips D.: The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model. SIAM J. Math. Anal. 30, 341–359 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics, Berlin: Springer, 2001. Reprint of the 1998 editionGoogle Scholar
  17. 17.
    Girault, V., Raviart, P.-A.: Finite element approximation of the Navier–Stokes equations. In: Lecture Notes in Mathematics, Vol. 749, Berlin: Springer, 1986. Extended versionGoogle Scholar
  18. 18.
    Grisvard, P.: Elliptic problems in nonsmooth domains. In: Monographs and Studies in Mathematics, Vol. 24. Boston: Pitman (Advanced Publishing Program), 1985Google Scholar
  19. 19.
    Grisvard, P.: Singularities in boundary value problems. Berlin: Springer, 1992Google Scholar
  20. 20.
    Hartman, P.: Ordinary differential equations. Classics in Applied Mathematics, vol. 38, Philadelphia: SIAM, 2002Google Scholar
  21. 21.
    Helffer, B., Sjöstrand, J.: From resolvent bounds to semigroup bounds. (2010). Preprint : arXiv:1001.4171v1
  22. 22.
    Henry, D.: Geometric theory of semilinear parabolic equations, Vol. 840. In: Lecture notes in mathematics. Berlin: Springer, 1981Google Scholar
  23. 23.
    Ivlev B.I., Kopnin N.B.: Electric currents and resistive states in thin superconductors. Adv. Phys. 33, 47–114 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    Kato, T.: Perturbation theory for linear operators, 3rd ed. Berlin: Springer, 1980Google Scholar
  25. 25.
    Kondratiev, V.A.: Boundary Value Problems for elliptic equations in domain with conical or angular points. Trans. Moscow Math. Soc. 1967, pp. 227–313Google Scholar
  26. 26.
    Lu K., Pan X.-B.: Estimates of the upper critical field for the Ginzburg-Landau equations of superconductivity. Phys. D 127, 73–104 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Mazya, V.G., Plamenevskii, V.A.: L p estimates of solutions of elliptic boundary problems in domains with edges. In: Transactions of the Moscow Mathematical Society, Issue 1, pp. 49–97, 1980Google Scholar
  28. 28.
    Montgomery R.: Hearing the zero locus of a magnetic field. Commun. Math. Phys. 168, 651–675 (1995)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    Pan, X.-B., Kwek, K.-H.: Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domains. Trans. Am. Math. Soc. 354, 4201–4227 (electronic). (2002)Google Scholar
  30. 30.
    Peres-Hari, L., Rubinstein, J., Sternberg, P.: Kinematic and dynamic vortices in a thin film driven by an applied current and magnetic field. Accepted for publication in Physica DGoogle Scholar
  31. 31.
    Protter, M.H., Weinberger, H.F.: Maximum principles in differential equations. Englewood Cliffs: Prentice-Hall, 1967Google Scholar
  32. 32.
    Rubinstein, J., Sternberg, P., Ma, Q.: Bifurcation diagram and pattern formation of phase slip centers in superconducting wires driven with electric currents. Phys. Rev. Lett. 99, 167003 (2007)Google Scholar
  33. 33.
    Rubinstein J., Sternberg P., Kim J.: On the behavior of a superconducting wire subjected to a constant voltage difference. SIAM J. Appl. Math. 70, 1739–1760 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Rubinstein J., Sternberg P., Zumbrun K.: The resistive state in a superconducting wire: bifurcation from the normal state. Arch. Ration. Mech. Anal. 195, 117–158 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Serfaty S., Tice I.: Ginzburg–Landau vortex dynamics with pinning and strong applied currents. Arch. Ration. Mech. Anal. 201, 413–464 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Tice I.: Ginzburg–Landau vortex dynamics driven by an applied boundary current. Commun. Pure Appl. Math. 63, 1622–1676 (2010)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsLouisiana State UniversityBaton RougeUSA
  2. 2.Laboratoire de MathématiquesUniversité Paris-Sud 11 et CNRSOrsay CedexFrance

Personalised recommendations