Skip to main content

Advertisement

Log in

Singular Density of States Measure for Subshift and Quasi-Periodic Schrödinger Operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Simon’s subshift conjecture states that for every aperiodic minimal subshift of Verblunsky coefficients, the common essential support of the associated measures has zero Lebesgue measure. We disprove this conjecture in this paper, both in the form stated and in the analogous formulation of it for discrete Schrödinger operators. In addition we prove a weak version of the conjecture in the Schrödinger setting. Namely, under some additional assumptions on the subshift, we show that the density of states measure, a natural measure associated with the operator family and whose topological support is equal to the spectrum, is singular. We also consider one-frequency quasi-periodic Schrödinger operators with continuous sampling functions and show that generically, the density of states measure is singular as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Avila A.: On the spectrum and Lyapunov exponent of limit periodic Schrödinger operators. Commun. Math. Phys. 288, 907–918 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Avila A., Damanik D.: Generic singular spectrum for ergodic Schrödinger operators. Duke Math. J. 130, 393–400 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Avila A., Forni G., Ulcigrai C.: Mixing for time-change of Heisenberg nilflows. J. Differ. Geom. 89, 369–410 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Boshernitzan M.: A condition for minimal interval exchange maps to be uniquely ergodic. Duke Math. J. 52, 723–752 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Boshernitzan M., Damanik D.: Generic continuous spectrum for ergodic Schrödinger operators. Commun. Math. Phys. 283, 647–662 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Carmona R., Lacroix J.: Spectral Theory of Random Schrödinger Operators. Birkhäuser, Boston (1990)

    Book  MATH  Google Scholar 

  7. Cycon H., Froese R., Kirsch W., Simon B.: Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics. Springer, Berlin (1987)

    Google Scholar 

  8. Damanik, D.: Strictly ergodic subshifts and associated operators. In: Spectral Theory and Mathematical Physics: a Festschrift in Honor of Barry Simon’s 60th Birthday, pp. 505–538. Proceedings of the Symposium on Pure Mathematics, vol. 76, Part 2. American Mathematical Society, Providence (2007)

  9. Damanik D., Lenz D.: A condition of Boshernitzan and uniform convergence in the multiplicative ergodic theorem. Duke Math. J. 133, 95–123 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Damanik D., Lenz D.: Zero-measure Cantor spectrum for Schrödinger operators with low-complexity potentials. J. Math. Pures Appl. 85, 671–686 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Damanik D., Lenz D.: Uniform Szegő cocycles over strictly ergodic subshifts. J. Approx. Theory 144, 133–138 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Flaminio L., Forni G.: Equidistribution of nilflows and applications to theta sums. Ergod. Theory Dyn. Syst. 26, 409–433 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Johnson R.: Exponential dichotomy, rotation number, and linear differential operators with bounded coefficients. J. Differ. Equ. 61, 54–78 (1986)

    Article  ADS  MATH  Google Scholar 

  14. Kirsch, W.: An invitation to random Schrödinger operators. In: Panor. Synthèse, vol. 25. Random Schrödinger Operators, pp. 1–119. Mathematical Society of France, Paris (2008)

  15. Kotani, S.: Lyapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators. In: Stochastic Analysis (Katata/Kyoto, 1982), pp. 225–247. North-Holland Mathematical Library, vol. 32. North-Holland, Amsterdam (1984)

  16. Kotani S.: Jacobi matrices with random potentials taking finitely many values. Rev. Math. Phys. 1, 129–133 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu Q.-H., Qu Y.-H.: Uniform convergence of Schrödinger cocycles over simple Toeplitz subshift. Ann. Henri Poincaré 12, 153–172 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Pastur L., Figotin A.: Spectra of Random and Almost-Periodic Operators. Grundlehren der Mathematischen Wissenschaften, vol. 297. Springer, Berlin (1992)

    Book  Google Scholar 

  19. Queffélec M.: Substitution Dynamical Systems—Spectral Analysis. Springer, Berlin (1987)

    MATH  Google Scholar 

  20. Simon B.: Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory Colloquium Publications, vol. 54. American Mathematical Society, Providence (2005)

    Google Scholar 

  21. Simon B.: Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory. Colloquium Publications, vol. 54. American Mathematical Society, Providence (2005)

    Google Scholar 

  22. Yoccoz, J.-C.: Some questions and remarks about \({{\rm SL}(2, \mathbb{R})}\) cocycles. In: Modern Dynamical Systems and Applications. Cambridge University Press, Cambridge, pp. 447–458 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Damanik.

Additional information

Communicated by B. Simon

A. A. was supported by the ERC Starting Grant “Quasiperiodic” and by the Balzan project of Jacob Palis.

D. D. was supported in part by a Simons Fellowship and NSF Grants DMS–0800100 and DMS–1067988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avila, A., Damanik, D. & Zhang, Z. Singular Density of States Measure for Subshift and Quasi-Periodic Schrödinger Operators. Commun. Math. Phys. 330, 469–498 (2014). https://doi.org/10.1007/s00220-014-1968-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1968-2

Keywords

Navigation