Skip to main content
Log in

Topology-Preserving Diffusion of Divergence-Free Vector Fields and Magnetic Relaxation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The usual heat equation is not suitable to preserve the topology of divergence-free vector fields, because it destroys their integral line structure. On the contrary, in the fluid mechanics literature, one can find examples of topology-preserving diffusion equations for divergence-free vector fields. They are very degenerate since they admit all stationary solutions to the Euler equations of incompressible fluids as equilibrium points. For them, we provide a suitable concept of “dissipative solutions”, which shares common features with both P.-L. Lions’s dissipative solutions to the Euler equations and the concept of “curves of maximal slopes”, à la De Giorgi, recently used to study the scalar heat equation in very general metric spaces. We show that the initial value problem admits such global solutions, at least in the two space variable case, and they are unique whenever they are smooth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich, Birkhäuser, (2008)

  2. Ambrosio, L., Gigli, N., Savaré, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195, 289–391 (2014)

    Google Scholar 

  3. Andreu F., Caselles V., Mazon J.: Finite propagation speed for limited flux diffusion equations. Arch. Ration. Mech. Anal. 269–297 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arnold, V.I., Khesin, B.A.: Topological methods in hydrodynamics. In: Applied Mathematical Sciences, vol. 125. Springer, New York (1998)

  5. Born M., Infeld L.: Foundations of the new field theory. Proc. Roy. Soc. Lond. A 425–451 (1934)

    Article  ADS  Google Scholar 

  6. Brenier, Y.: Extended Monge–Kantorovich Theory, Lecture Notes in Mathematics, vol. 1813, Springer, pp. 91–122 (2003)

  7. Brenier Y.: Hydrodynamic structure of the augmented Born–Infeld equations. Arch. Ration. Mech. Anal. 65–91 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brenier Y., De Lellis C., Székelyhidi László L. Jr: Weak–strong uniqueness for measure-valued solutions. Comm. Math. Phys. 351–361 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Demoulini S., Stuart D., Tzavaras A.: Weak–strong uniqueness of dissipative measure-valued solutions for polyconvex elastodynamics. Arch. Ration. Mech. Anal. 927–961 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Freedman M., He Z.-X.: Divergence-free fields: energy and asymptotic crossing number. Ann. Math.(2), 189–229 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gigli N.: On the Heat flow on metric measure spaces: existence, uniqueness and stability. Calc. Var. Part. Diff. Equat. 101–120 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gigli N., Kuwada K., Ohta S.I.: Heat flow on Alexandrov spaces. Comm. Pure Appl. Math. 307–331 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jordan R., Kinderlehrer D., Otto F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 1–17 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lions, P.-L.: Mathematical Topics in Fluid Mechanics. vol. 1. Incompressible models, Oxford Lecture Series in Mathematics and its Applications, pp. 3 (1996)

  15. McCann R., Puel M.: Constructing a relativistic heat flow by transport time steps. Ann. Inst. H. Poincaré Anal. Non Linéaire 2539–2580 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Mielke, A.: Differential, energetic, and metric formulations for rate-independent processes. In: Nonlinear PDE’s and Applications. Lecture Notes in Mathematics, vol. 2028, pp. 87–170. Springer, Heidelberg (2011)

  17. Moffatt H.K.: Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. J. Fluid Mech. 359–378 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Nishiyama T.: Construction of the three-dimensional stationary Euler flows from pseudo-advected vorticity equations. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 2393–2398 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Nishiyama T.: Magnetohydrodynamic approaches to measure-valued solutions of the two-dimensional stationary Euler equations. Bull. Inst. Math. Acad. Sin. (N.S.) 2, 139–154 (2007)

    MATH  MathSciNet  Google Scholar 

  20. Rivière T.: High-dimensional helicities and rigidity of linked foliations. Asian J. Math. 505–533 (2002)

    MATH  MathSciNet  Google Scholar 

  21. Sermange M., Temam R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 635–664 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Villani, C.: Topics in optimal transportation, Grad. Stud. Math., vol. 58, AMS (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Brenier.

Additional information

Communicated by L. Caffarelli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenier, Y. Topology-Preserving Diffusion of Divergence-Free Vector Fields and Magnetic Relaxation. Commun. Math. Phys. 330, 757–770 (2014). https://doi.org/10.1007/s00220-014-1967-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1967-3

Keywords

Navigation