Skip to main content
Log in

Local-in-Space Criteria for Blowup in Shallow Water and Dispersive Rod Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We unify a few of the best known results on wave breaking for the Camassa–Holm equation (by R. Camassa, A. Constantin, J. Escher, L. Holm, J. Hyman and others) in a single theorem: a sufficient condition for the breakdown is that \({u_0'+|u_0|}\) is strictly negative in at least one point \({x_0 \in \mathbb{R}}\). Such blowup criterion looks more natural than the previous ones, as the condition on the initial data is purely local in the space variable. Our method relies on the introduction of two families of Lyapunov functions. Contrary to McKean’s necessary and sufficient condition for blowup, our approach applies to other equations that are not integrable: we illustrate this fact by establishing new local-in-space blowup criteria for an equation modeling nonlinear dispersive waves in elastic rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjamin T.B., Bona J.L., Mahony J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272(1220), 47–78 (1972)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Brandolese, L., Cortez, M.F.: On permanent and breaking waves in hyperelastic rods and rings. J. Funct. Anal. (to appear). arXiv:1311.5170

  3. Bressan A., Constantin A.: Global conservative solutions of the Camassa-Holm equation. Arch. Ration. Mech. Anal. 183(2), 215–239 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bressan A., Constantin A.: Global dissipative solutions of the Camassa-Holm equation. Anal. Appl. 5, 1–27 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brandolese L.: Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces. Int. Math. Res. Not. IMRN 22, 5161–5181 (2012)

    MathSciNet  Google Scholar 

  6. Camassa R., Holm L.: An integrable shallow–water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Camassa R., Holm L., Hyman J.M.: A new integrable shallow–water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  Google Scholar 

  8. Coclite G.M., Holden H., Karlsen K.H.: Global weak solutions to a generalized hyperelastic-rod wave equation. SIAM J. Math. Anal. 37(4), 1044–1069 (2005) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  9. Constantin A.: Geometrical methods in hydrodynamics. J. Équations Dérivées Partielles 2, 14 (2001)

    MathSciNet  Google Scholar 

  10. Constantin A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50(2), 321–362 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantin A., Escher J.: Global existence and blow-up for a shallow water equation. Ann. Scuola Norm. Pisa. 26(2), 303–328 (1998)

    MATH  MathSciNet  Google Scholar 

  12. Constantin A., Escher J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181(2), 229–243 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Constantin A., Lannes D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Constantin A., Strauss W.A.: Stability of a class of solitary waves in compressible elastic rods. Phys. Lett. A. 270(3-4), 140–148 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Dai H.-H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mech. 127(1-4), 193–207 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dai H.-H., Huo Y.: Solitary shock waves and other travelling waves in a general compressible hyperelastic rod. R. Soc. Lond. Proc. Ser A. Math. Phys. Eng. Sci. 456, 331–363 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Glass O., Sueur F.: Smoothness of the flow map for low-regularity solutions of the Camassa-Holm equations. Discrete Continuous Dyn. Syst. A 33(7), 2791–2808 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Grunert K., Holden H., Raynaud X.: Global conservative solutions of the Camassa–Holm for initial data with nonvanishing asymptotics, Discr. Cont. Dyn. Syst. 32, 4209–4227 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Himonas A.A., Misiołek G.: The Cauchy problem for an integrable shallow-water equation. Diff. Integr. Eqn. 14(7), 821–831 (2001)

    MATH  Google Scholar 

  20. Holden H., Raynaud X.: Global conservative solutions of the generalized hyperelastic-rod wave equation. J. Diff. Eqn. 233(2), 448–484 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Holden H., Raynaud X.: Global conservative solutions of the Camassa–Holm equation. A Lagrangian point of view. Comm. Part. Diff. Eq. 32, 1–27 (2007)

    Article  MathSciNet  Google Scholar 

  22. Holden H., Raynaud X.: Dissipative solutions for the Camassa–Holm equation. Discr. Cont. Dyn. Syst. 24, 1047–1112 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu Y.: Global existence and blow-up solutions for a nonlinear shallow water equation. Math. Ann. 335(3), 717–735 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. McKean, H.P.: Breakdown of a shallow water equation. Asian J. Math. 2(4), 867–874 (1998); Correction to “Breakdown of a shallow water equation”, Asian J. Math. 3, (1999)

    Google Scholar 

  25. McKean H.P.: Breakdown of the Camassa-Holm equation. Comm. Pure Appl. Math. 57(3), 416–418 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Molinet L.: On well-posedness results for Camassa-Holm equation on the line: a survey. J. Nonlinear Math. Phys. 11(4), 521–533 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. Wahlén E.: On the blow-up of solutions to the periodic Camassa–Holm equation. NoDEA 13, 643–653 (2007)

    Article  MATH  Google Scholar 

  28. Zhou Y.: Wave breaking for a shallow water equation. Nonlinear Anal. 57(1), 137–152 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zhou Y.: Local well-posedness and blow-up criteria of solutions for a rod equation. Math. Nachr. 278(14), 1726–1739 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Zhou Y.: Blow-up of solutions to a nonlinear dispersive rod equation. Calc. Var. Part. Diff. Eq. 25(1), 63–77 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Brandolese.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandolese, L. Local-in-Space Criteria for Blowup in Shallow Water and Dispersive Rod Equations. Commun. Math. Phys. 330, 401–414 (2014). https://doi.org/10.1007/s00220-014-1958-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1958-4

Keywords

Navigation