Skip to main content
Log in

One-Dimensional Ising Models with Long Range Interactions: Cluster Expansion, Phase-Separating Point

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider the phase separation problem for the one-dimensional ferromagnetic Ising model with long-range two-body interaction, J(n) = n −2+α, where \({n\in {\rm {I\!N}}}\) denotes the distance of the two spins and \({\alpha \in [0,\alpha_+[}\) with α + = (log 3)/(log 2) −1. We prove that when α = 0 the localization of the phase separation fluctuates macroscopically with a non-uniform explicit limiting law, while when 0 < α < α + the macroscopic fluctuations disappear and mesoscopic ones appear with a gaussian behavior when conveniently scaled. The mean magnetization profile is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, D.B.: Surfaces Structures and Phase Transition-Exact Results. Phase Transitions and Critical Phenomena, vol. 10, pp. 1–74. Academic Press, London (1986)

  2. Abraham D.B., Reed P.: Interface profile of the Ising ferromagnet in two dimensions. Commun. Math. Phys. 49, 35–46 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aizenman M., Chayes J., Chayes L., Newman C.: Discontinuity of the magnetization in one-dimensional 1/|xy|2 percolation, Ising and Potts models. J. Stat. Phys. 50(1–2), 1–40 (1988)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Ben Arous G., Guionnet A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108, 517–542 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bricmont J., Lebowitz J., Pfister C.E.: On the equivalence of boundary conditions. J. Stat. Phys. 21, 573–582 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bissacot R., Fernández R., Procacci A.: On the convergence of cluster expansions for polymer gases. J. Stat. Phys. 139, 598–617 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Burkov S.E., Sinai Ya.G.: Phse diagrams of one-dimensional lattice models with long-range antiferromagnetic interaction. Russ. Math Survey 38(4), 235–257 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. Cassandro, M., Ferrari, P.A., Merola, I., Presutti, E.: Geometry of contours and Peierls estimates in d = 1 Ising models with long range interaction. J. Math. Phys. 46(5), 053305 (2005)

    Google Scholar 

  9. Cassandro M., Olivieri E.: Renormalization group and analyticity in one dimension: a proof of Dobrushin’s theorem. Commun. Math. Phys. 80, 255–270 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cassandro M., Orlandi E., Picco P.: Phase transition in the 1d random field Ising model with long range interaction. Commun. Math. Phys. 2, 731–744 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cassandro, M., Orlandi, E., Picco, P.: Typical Gibbs configurations for the 1d random field Ising model with long range interaction. Commun. Math. Phys. 309, 229–253 (2012)

    Google Scholar 

  12. Cellarosi F., Sinai Ya.G.: The Möbius fonction and statistical mechanics. Bull. Math. Sci. 1, 245–275 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Coquille L., Velenik Y.: A finite-volume version of Aizenman Higuchi theorem for the 2d Ising model. Probab. Theory Relat. Fields 153, 25–44 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dobrushin R.: The description of a random field by means of conditional probabilities and conditions of its regularity. Theory Probab. Appl. 13, 197–224 (1968)

    Article  Google Scholar 

  15. Dobrushin R.: The conditions of absence of phase transitions in one-dimensional classical systems. Matem. Sbornik 93(N1), 29–49 (1974)

    Google Scholar 

  16. Dobrushin R.: Analyticity of correlation functions in one-dimensional classical systems with slowly decreasing potentials. Commun. Math. Phys. 32(N4), 269–289 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  17. Dobrushin R.: Gibbs state describing coexistence of phases for a three-dimensional Ising model. Theory Probab. Appl. 17, 582–600 (1972)

    Article  MATH  Google Scholar 

  18. Dobrushin R., Hryniv O.: Fluctuations of the phase boundary in the 2D Ising ferromagnet. Commun. Math. Phys. 189, 395–445 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Dyson F.J.: Existence of phase transition in a one-dimensional Ising ferromagnetic. Commun. Math. Phys. 12, 91–107 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  20. Dyson F.J.: Non-existence of spontaneous magnetization in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 212–215 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  21. Dyson F.J.: An Ising ferromagnet with discontinuous long-range order. Commun. Math. Phys. 21, 269–283 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  22. Fannes M., Vanheuverzwijn P., Verbeure A.: Energy-entropy inequalities for classical lattice systems. J. Stat. Phys. 29(3), 547–560 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  23. Fröhlich J., Spencer T.: The phase transition in the one-dimensional Ising model with \({\frac{1}{r^2}}\) interaction energy. Commun. Math. Phys. 84, 87–101 (1982)

    Article  ADS  MATH  Google Scholar 

  24. Gallavotti G.: The phase separation line in the two-dimensional Ising model. Commun. Math. Phys. 27, 103–136 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  25. Gallavotti G., Miracle-Solé S.: Statistical mechanics of lattice systems. Commun. Math. Phys. 5, 317–323 (1967)

    Article  ADS  MATH  Google Scholar 

  26. Gallavotti G., Martin-Löf A., Miracle-Solé S.: Some pro blems connected with the description of coexisting phases at low temperatures in Ising models. In: Lenard, A. (eds) Mathematical Methods in Statistical Mechanics, pp. 162–202. Springer, Berlin (1973)

    Google Scholar 

  27. Greenberg L., Ioffe D.: On an invariance principle for phase separation lines. Ann. Inst. H. Poincaré Probab. Stat. 45, 871–885 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  28. Higuchi Y.: On some limit theorems related to the phase separation line in the two-dimensional Ising model. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 50, 287–315 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hryniv O.: On local behavior of the phase separation line in the 2D Ising model. Probab. Theory Relat. Fields 110, 91–107 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Imbrie J.Z.: Decay of correlations in the one-dimensional Ising model with J ij  = | ij|−2. Commun. Math. Phys. 85, 491–515 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  31. Imbrie J.Z., Newman C.M.: An intermediate phase with slow decay of correlations in one-dimensional 1/| xy| 2 percolation, Ising and Potts models. Commun. Math. Phys. 118, 303–336 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  32. Johanson K.: Condensation of a one-dimensional lattice gas. Commun. Math. Phys. 141, 41–61 (1991)

    Article  ADS  Google Scholar 

  33. Johanson K.: Separation of phases at low temperatures in a one-dimensional continuous gas. Commun. Math. Phys. 141, 259–278 (1991)

    Article  ADS  Google Scholar 

  34. Johanson K.: On the separation of phases in one-dimensional gases. Commun. Math. Phys. 169, 521–561 (1995)

    Article  ADS  Google Scholar 

  35. Minlos, R.A., Sinai, Ya. G.: The phenomenon of phase separation at low temperatures in certain lattice models of a gas. I Math. USSR Sbornik 2, 339–395 (1967) and II Trans. Moscow Math. Soc. 19, 121–196 (1968)

  36. Pfister Ch.-E.: Large deviations and phase separation in the two-dimensional Ising model. Helv. Phys. Acta 64(7), 953–1054 (1991)

    MathSciNet  Google Scholar 

  37. Pfister C.-E., Velenik Y.: Large deviations and continuum limit in the 2D Ising model. Probab. Theory Relat. Fields 109, 435–506 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  38. Pfister C.-E., Velenik Y.: Interface, surface tension and reentrant pinning transition in the 2D Ising model. Commun. Math. Phys. 204(2), 269–312 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Procacci A., Scoppola B.: Polymer gas approach to N-body lattice systems. J. Stat. Phys. 96, 49–68 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Rota G.-C.: On the foundation of combinatorial theory: theory of Möbius function. Z. Wahrsch. Verw. Gebiete 2, 340–368 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rogers J.B., Thompson C.J.: Absence of long range order in one dimensional spin systems. J. Stat. Phys. 25, 669–678 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  42. Ruelle D.: Statistical mechanics of one-dimensional lattice gas. Commun. Math. Phys. 9, 267–278 (1968)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Thouless D.J.: Long-range order in one-dimensional Ising systems. Phys. Rev. 187, 732–733 (1969)

    Article  ADS  Google Scholar 

  44. van Beijeren H.: Interface sharpness in the Ising system. Commun. Math. Phys. 40, 1–6 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  45. Wigner E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67(2), 325–327 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wigner E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Picco.

Additional information

Communicated by F. Toninelli

This work was supported by CNRS-INdAM GDRE 224 GREFI-MEFI, M.C and I.M were supported by Prin07: 20078XYHYS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cassandro, M., Merola, I., Picco, P. et al. One-Dimensional Ising Models with Long Range Interactions: Cluster Expansion, Phase-Separating Point. Commun. Math. Phys. 327, 951–991 (2014). https://doi.org/10.1007/s00220-014-1957-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1957-5

Keywords

Navigation