Skip to main content
Log in

The Effective Theory of Strings

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that the Nambu–Goto string, and its higher dimensional generalizations, can be quantized, in the sense of an effective theory, in any dimension of the target space. The crucial point is to consider expansions around classical string configurations. We are using tools from perturbative algebraic quantum field theory, quantum field theory on curved spacetimes, and the Batalin–Vilkovisky formalism. Our model has some similarities with the Lüscher–Weisz string, but we allow for arbitrary classical background string configurations and keep the diffeomorphism invariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Green, M.B., Schwarz, J.H. Witten, E.: Superstring theory, Vol. 1, Cambridge: Cambridge University Press, 1987

  2. Rebbi C.: Dual models and relativistic quantum strings. Phys. Rept. 12, 1–73 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  3. Pohlmeyer K.: A group theoretical approach to the quantization of the free relativistic closed string. Phys. Lett. B119, 100 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. Thiemann T.: The LQG string: Loop quantum gravity quantization of string theory I: Flat target space. Class. Quant. Grav. 23, 1923–1970 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Meusburger C., Rehren K.-H.: Algebraic quantization of the closed bosonic string. Commun. Math. Phys. 237, 69–85 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  6. Brandt F., Troost W., van Proeyen A.: The BRST-antibracket cohomology of 2-d gravity conformally coupled to scalar matter. Nucl. Phys. B 464, 353–408 (1996)

    Article  ADS  MATH  Google Scholar 

  7. Gomis J., Paris J., Samuel S.: Antibracket, antifields and gauge theory quantization. Phys. Rept. 259, 1–145 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  8. Grundling H., Hurst C.A.: The operator quantization of the open bosonic string: field algebra. Commun. Math. Phys. 156, 473–525 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Dimock J.: Locality in free string field theory-II. Annales Henri Poincaré 3, 613–634 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Brink, L., Henneaux, M.: Principles of String Theory. New York: Plenum Press, 1988

  11. Brunetti R., Fredenhagen K., Verch R.: The generally covariant locality principle: A New paradigm for local quantum field theory. Commun. Math. Phys. 237, 31–68 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  12. Hollands S., Wald R.M.: Existence of local covariant time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 231, 309–345 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Barnich G., Brandt F., Henneaux M.: Local BRST cohomology in gauge theories. Phys. Rept. 338, 439–569 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Fredenhagen K., Rejzner K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697–725 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Lüscher, M., Weisz, P.: Quark confinement and the bosonicstring. JHEP 0207, 049 (2002)

    Google Scholar 

  16. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton: Princeton University Press, 1992

  17. Aharony O., Dodelson M.: Effective string theory and nonlinear Lorentz invariance. JHEP 1202, 008 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dubovsky S., Flauger R., Gorbenko V.: Effective string theory revisited. JHEP 1209, 044 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  19. Polchinski J., Strominger A.: Effective string theory. Phys. Rev. Lett. 67, 1681–1684 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Mund J., Schroer B., Yngvason J.: String localized quantum fields from Wigner representations. Phys. Lett. B596, 156–162 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. Brunetti, R., Fredenhagen, K.: Towards a background independent formulation of perturbative quantum gravity. In: Fauser, B., Tolksdorf, J., Zeidler, E. (eds.) Quantum Gravity: Mathematical Models and Experimental Bounds, Boston: Birkhäuser, 2007, p. 151

  22. Hollands S., Wald R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227–312 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Wald, R.M. General Relativity, Chicago: University of Chicago Press, 1984

  24. Eggers J., Hoppe J.: Singularity formation for time-like extremal hypersurfaces. Phys. Lett. B680, 274–278 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Müller O.: The Cauchy problem of Lorentzian minimal surfaces in globally hyperbolic manifolds. Ann. Global Anal. Geom. 32(1), 67–85 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Allen P., Andersson L., Isenberg J.: Timelike minimal submanifolds of general co-dimension in Minkowski space time. J. Hyperbolic Differ. Equ. 3(4), 691–700 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fredenhagen K., Rejzner K.: Batalin-Vilkovisky formalism in the functional approach to classical field theory. Commun. Math. Phys. 314, 93–127 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Brunetti R., Fredenhagen K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623–661 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Brunetti R., Dütsch M., Fredenhagen K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13(5), 1541–1599 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis. Providence: American Mathematical Society, 1997

  31. Lang, S.: Differential and Riemannian Manifolds, Berlin: Springer, 1995

  32. Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorentzian manifolds and quantization, Billingsley: European Mathematical Society, 2007

  33. Kleinert H.: The membrane properties of condensing strings. Phys. Lett. B 174, 335–338 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bogoliubov, N., Shirkov, D.: Introduction to the Theory of Quantized Fields. New York: Interscience Publishers, Inc., 1959

  35. Hollands S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033–1172 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rejzner, K.: Batalin-Vilkovisky formalism in locally covariant field theory Ph.D. thesis, Hamburg University, 2011

  37. Kontsevich M.: Deformation quantization of Poisson manifolds, I. Lett. Math. Phys. 66, 157–216 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. Hollands S., Wald R.M.: Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223, 289–326 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. Fulling S., Narcowich F., Wald R.M.: Singularity structure of the two point function in quantum field theory in curved space-time II.. Annals Phys. 136, 243–272 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  40. Dütsch M., Fredenhagen K.: Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity. Rev. Math. Phys. 16, 1291–1348 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  41. Brennecke F., Dütsch M.: Removal of violations of the Master Ward Identity in perturbative QFT. Rev. Math. Phys. 20, 119–172 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Guichardet, A.: Cohomologie des groupes topologiques et des algèbres de Lie, Vol. 2 of Textes Mathématiques [Mathematical Texts], CEDIC, Paris (1980)

  43. Piguet, O., Sorella, S.P.:Algebraic Renormalization. In: Lecture Notes in Physics, Vol. 28, Berlin: Springer, 1995

  44. Brandt F., Dragon N., Kreuzer M.: All consistent Yang-Mills anomalies. Phys. Lett. B 231, 263–270 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  45. Polyakov A.M.: Fine structure of strings. Nucl. Phys. B 268, 406–412 (1986)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Zahn.

Additional information

Communicated by M. Salmhofer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahns, D., Rejzner, K. & Zahn, J. The Effective Theory of Strings. Commun. Math. Phys. 327, 779–814 (2014). https://doi.org/10.1007/s00220-014-1955-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1955-7

Keywords

Navigation