Skip to main content
Log in

Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask)

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we study the subset of generalized quantum measurements on finite dimensional systems known as local operations and classical communication (LOCC). While LOCC emerges as the natural class of operations in many important quantum information tasks, its mathematical structure is complex and difficult to characterize. Here we provide a precise description of LOCC and related operational classes in terms of quantum instruments. Our formalism captures both finite round protocols as well as those that utilize an unbounded number of communication rounds. While the set of LOCC is not topologically closed, we show that finite round LOCC constitutes a compact subset of quantum operations. Additionally we show the existence of an open ball around the completely depolarizing map that consists entirely of LOCC implementable maps. Finally, we demonstrate a two-qubit map whose action can be approached arbitrarily close using LOCC, but nevertheless cannot be implemented perfectly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acín, A., Bruß, D., Lewenstein, M., Sanpera, A.: Classification of mixed three-qubit states. Phys. Rev. Lett. 87(4), 040401 (2001). (arxiv.org/abs/quant-ph/0103025). doi:10.1103/PhysRevLett.87.040401

    Google Scholar 

  2. Anderson, E., Oi, D.K.L.: Binary search trees for generalized measurements. Phys. Rev. A 77(5), 052104 (2008). (arxiv.org/abs/0712.2665). doi:10.1103/PhysRevA.77.052104

    Google Scholar 

  3. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993). doi:10.1103/PhysRevLett.70.1895

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bennett, C.H., Bernstein, H., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53(4), 2046–2052 (1996). (arXiv:quant-ph/9511030). doi:10.1103/PhysRevA.53.2046

    Google Scholar 

  5. Bruß, D., Cirac, J.I., Horodecki, P., Hulpke, F., Kraus, B., Lewenstein, M., Sanpera, A.: Reflections upon separability and distillability. J. Mod. Optics 49(8), 1399–1418 (2002). (arXiv:quant-ph/0110081). doi:10.1080/09500340110105975

    Google Scholar 

  6. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59(2), 1070–1091 (1999). (arXiv:quant-ph/9804053). doi:10.1103/PhysRevA.59.1070

    Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385–5388 (1999). (arXiv:quant-ph/9808030). doi:10.1103/PhysRevLett.82.5385

    Google Scholar 

  8. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996). (arXiv:quant-ph/9604024). doi:10.1103/PhysRevA.54.3824

    Google Scholar 

  9. Bennett, C.H., Popescu, S., Rohrlich, D., Smolin, J.A., Thapliyal, A.V.: Exact and asymptotic measures of multipartite pure state entanglement. Phys. Rev. A 63(1), 012307 (2000). (arXiv:quant-ph/9908073). doi:10.1103/PhysRevA.63.012307

    Google Scholar 

  10. Cui, W., Chitambar, E., Lo, H.-K.: Randomly distilling W-class states into general configurations of two-party entanglement. Phys. Rev. A 84(5), 052301 (2011). (arXiv:1106.1209). doi:10.1103/PhysRevA.84.052301

    Google Scholar 

  11. Chitambar E., Cui W., Lo H.-K.: Increasing entanglement monotones by separable operations. Phys. Rev. Lett. 108(24), 240504 (2012). doi:10.1103/PhysRevLett.108.240504

    Article  ADS  Google Scholar 

  12. Cirac, J.I., Dür, W., Kraus, B., Lewenstein, M.: Entangling operations and their implementation using a small amount of entanglement. Phys. Rev. Lett. 86(3), 544–547 (2001). (arXiv:quant-ph/0007057). doi:10.1103/PhysRevLett.86.544

    Google Scholar 

  13. Chitambar, E., Duan, R., Shi, Y.: Tripartite entanglement transformations and tensor rank. Phys. Rev. Lett. 101(14), 140502 (2008). (arXiv:0805.2977). doi:10.1103/PhysRevLett.101.140502

    Google Scholar 

  14. Chefles A.: Condition for unambiguous state discrimination using local operations and classical communication. Phys. Rev. A 69(5), 050307 (2004). doi:10.1103/PhysRevA.69.050307

    Article  ADS  Google Scholar 

  15. Chitambar, E.: Local quantum transformations requiring infinite rounds of classical communication. Phys. Rev. Lett. 107(19), 190502 (2011). (arXiv:1105.3451). doi:10.1103/PhysRevLett.107.190502

    Google Scholar 

  16. Choi M.-D.: Completely positive linear maps on complex matrices. Liner Alg. Appl. 10(3), 285–290 (1975). doi:10.1016/0024-3795(75)90075-0

    Article  MATH  Google Scholar 

  17. Childs, A.M., Leung, D., Mančinska, L., Ozols, M.: A framework for bounding nonlocality of state discrimination. Commun. Math. Phys. 323(3), 1121–1153 (2013). (arXiv:1206.5822). doi:10.1007/s0020-013-1784-0

    Google Scholar 

  18. Cohen, S.M.: Local distinguishability with preservation of entanglement. Phys. Rev. A 75(5), 052313 (2007). (arXiv:quant-ph/0602026). doi:10.1103/PhysRevA.75.052313

    Google Scholar 

  19. Duan, R., Feng, Y., Xin, Y., Ying, M.: Distinguishability of quantum states by separable operations. IEEE Trans. Inf. Theory 55(3), 1320–1330 (2009). (arXiv:0705.0795). doi:10.1109/TIT.2008.2011524

    Google Scholar 

  20. Donald, M.J., Horodecki, M., Rudolph O.: The uniqueness theorem for entanglement measures. J. Math. Phys. 43, 4252–4272 (2002). (arXiv:quant-ph/0105017). doi:10.1063/1.1495917

    Google Scholar 

  21. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17(3), 239–260 (1970). http://projecteuclid.org/euclid.cmp/1103842336, doi:10.1007/BF01647093

    Google Scholar 

  22. DiVincenzo, D.P., Leung, D.W., Terhal Barbara M.: Quantum data hiding. IEEE Trans. Inf. Theory 48(3), 580–598 (2002). (arXiv:quant-ph/0103098). doi:10.1109/18.985948

    Google Scholar 

  23. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000). (arXiv:quant-ph/0005115). doi:10.1103/PhysRevA.62.062314

    Google Scholar 

  24. Eggeling, T., Werner, R.F.: Hiding classical data in multipartite quantum states. Phys. Rev. Lett. 89(9), 097905 (2002). (arXiv:quant-ph/0203004). doi:10.1103/PhysRevLett.89.097905

    Google Scholar 

  25. Fortescue, B., Lo, H.-K.: Random bipartite entanglement from W and W-like states. Phys. Rev. Lett. 98(26), 260501 (2007). (arXiv:quant-ph/0607126). doi:10.1103/PhysRevLett.98.260501

  26. Gurvits, L., Barnum, H.: Separable balls around the maximally mixed multipartite quantum states. Phys. Rev. A 68(4), 042312 (2003). (arXiv:quant-ph/0302102). doi:10.1103/PhysRevA.68.042312

    Google Scholar 

  27. Gottesman, D., Lo H.-K.: Proof of security of quantum key distribution with two-way classical communications. IEEE Trans. Inf. Theory 49(2), 457–475 (2003). (arXiv:quant-ph/0105121). doi:10.1109/TIT.2002.807289

    Google Scholar 

  28. Horodecki, M., Horodecki, P., Horodecki R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996). (arXiv:quant-ph/9605038). doi:10.1016/S0375-9601(96)00706-2

    Google Scholar 

  29. Horodecki, M., Horodecki, P., Horodecki R.: Mixed-state entanglement and distillation: is there a “bound” entanglement in nature? Phys. Rev. Lett. 80(24), 5239–5242 (1998). (arXiv:quant-ph/9801069). doi:10.1103/PhysRevLett.80.5239

  30. Horodecki, M., Horodecki, P., Horodecki, R.: Limits for entanglement measures. Phys. Rev. Lett. 84(9), 2014–2017 (2000). (arXiv:quant-ph/9908065). doi:10.1103/PhysRevLett.84.2014

    Google Scholar 

  31. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232(5), 333–339 (1997). (arXiv:quant-ph/9703004). doi:10.1016/S0375-9601(97)00416-7

    Google Scholar 

  32. Horodecki, M.: Entanglement measures. Quant. Inf. Comput. 1(1), 3–26 (2001). http://www.rintonpress.com/journals/qic-1-1/miarprz3.pdf

  33. Jamiołkowski A.: Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 3(4), 275–278 (1972). doi:10.1016/0034-4877(72)90011-0

    Article  ADS  MATH  Google Scholar 

  34. Kleinmann, M., Kampermann, H., Bruß, D.: Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm. Phys. Rev. A 84(4), 042326 (2011) (arXiv:1105.5132). doi:10.1103/PhysRevA.84.042326

    Google Scholar 

  35. Kitaev, A.Y., Shen, A., Vyalyi, M.N.: Classical and Quantum Computation, Vol. 47 of Graduate Studies in Mathematics. American Mathematical Society (2002). http://books.google.com/books?id=qYHTvHPvmG8C

  36. Kıntaş, S., Turgut, S.: Transformations of W-type entangled states. J. Math. Phys. 51, 092202 (2010). (arXiv:1003.2118). doi:10.1063/1.3481573

    Google Scholar 

  37. Koashi, M., Takenaga, F., Yamamoto T., Imoto N.: Quantum nonlocality without entanglement in a pair of qubits. (arXiv:0709.3196v1[quant-ph]) (2007)

  38. Lo, H.-K., Popescu, S.: Concentrating entanglement by local actions: beyond mean values. Phys. Rev. A 63(2), 022301 (2001). (arXiv:quant-ph/9707038). doi:10.1103/PhysRevA.63.022301

    Google Scholar 

  39. Laustsen, T., Verstraete, F., van Enk, S.J.: Local vs. joint measurements for the entanglement of assistance. Quant. Inf. Comput. 3(1), 64–83 (2003). (arXiv:quant-ph/0206192)

    Google Scholar 

  40. Massar S., Popescu S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74(8), 1259–1263 (1995). doi:10.1103/PhysRevLett.74.1259

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Nielsen, M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83(2), 436–439 (1999). (arXiv:quant-ph/9811053). doi:10.1103/PhysRevLett.83.436

    Google Scholar 

  42. Oreshkov, O., Brun, T.A.: Weak measurements are universal. Phys. Rev. Lett. 95(11), 110409 (2005). (arXiv:quant-ph/0503017). doi:10.1103/PhysRevLett.95.110409

    Google Scholar 

  43. Owari, M., Hayashi, M.: Two-way classical communication remarkably improves local distinguishability. New J. Phys. 10(1), 013006 (2008). (arXiv:0708.3154). doi:10.1088/1367-2630/10/1/013006

  44. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7(1&2), 1–51 (2007). http://www.rintonpress.com/xqic7/qic-7-12/001-051.pdf. (arXiv:quant-ph/0504163)

  45. Peres A., Wootters W.K.: Optimal detection of quantum information. Phys. Rev. Lett. 66(9), 1119–1122 (1991). doi:10.1103/PhysRevLett.66.1119

    Article  ADS  Google Scholar 

  46. Rains, E.M.: Entanglement purification via separable superoperators. (arXiv:quant-ph/ 9707002v3) (1998)

  47. Rains, E.M.: A semidefinite program for distillable entanglement. IEEE Trans. Inf. Theory 47(7), 2921–2933 (2001). (arXiv:quant-ph/0008047). doi:10.1109/18.959270

    Google Scholar 

  48. De Rinaldis, S.: Distinguishability of complete and unextendible product bases. Phys. Rev. A 70(2), 022309 (2004). (arXiv:quant-ph/0304027). doi:10.1103/PhysRevA.70.022309

  49. Rockafellar, R.T.: Convex analysis. Princeton Mathematical Series. Princeton University Press (1996). http://books.google.com/books?id=1TiOka9bx3sC

  50. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in Bell states. Phys. Rev. Lett. 86(25), 5807–5810 (2001). (arXiv:quant-ph/0011042). doi:10.1103/PhysRevLett.86.5807

    Google Scholar 

  51. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Quantifying entanglement. Phys. Rev. Lett. 78(12), 2275–2279 (1997). (arXiv:quant-ph/9702027). doi:10.1103/PhysRevLett.78.2275

    Google Scholar 

  52. Watrous, J.: Notes on super-operator norms induced by Schatten norms. Quant. Inf. Comput. 5(1), 58–68 (2005). http://www.rintonpress.com/xqic5/qic-5-1/058-068.pdf. (arXiv:quant-ph/0411077)

    Google Scholar 

  53. Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277–4281 (1989). doi:10.1103/PhysRevA.40.4277

    Article  ADS  Google Scholar 

  54. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245–2248 (1998). (arXiv:quant-ph/9709029). doi:10.1103/PhysRevLett.80.2245

    Google Scholar 

  55. Xin, Y., Duan, R.: Local distinguishability of orthogonal \({2 \otimes 3}\) pure states. Phys. Rev. A 77(1), 012315 (2008). (arXiv:0709.1651). doi:10.1103/PhysRevA.77.012315

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Chitambar.

Additional information

Communicated by M. B. Ruskai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chitambar, E., Leung, D., Mančinska, L. et al. Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask). Commun. Math. Phys. 328, 303–326 (2014). https://doi.org/10.1007/s00220-014-1953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1953-9

Keywords

Navigation