Skip to main content
Log in

An Instability Index Theory for Quadratic Pencils and Applications

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Primarily motivated by the stability analysis of nonlinear waves in second-order in time Hamiltonian systems, in this paper we develop an instability index theory for quadratic operator pencils acting on a Hilbert space. In an extension of the known theory for linear pencils, explicit connections are made between the number of eigenvalues of a given quadratic operator pencil with positive real parts to spectral information about the individual operators comprising the coefficients of the spectral parameter in the pencil. As an application, we apply the general theory developed here to yield spectral and nonlinear stability/instability results for abstract second-order in time wave equations. More specifically, we consider the problem of the existence and stability of spatially periodic waves for the “good” Boussinesq equation. In the analysis our instability index theory provides an explicit, and somewhat surprising, connection between the stability of a given periodic traveling wave solution of the “good” Boussinesq equation and the stability of the same periodic profile, but with different wavespeed, in the nonlinear dynamics of a related generalized Korteweg–de Vries equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Angulo J., Bona J., Scialom M.: Stability of cnoidal waves. Adv. Differ. Equ. 11, 1321–1374 (2006)

    MATH  Google Scholar 

  2. Angulo, J., Quintero, J.R.: Existence and orbital stability of cnoidal waves for a 1D Boussinesq equation. Int. J. Math. Math. Sci. 2007, Article ID 52020 (2007). doi:10.1155/2007/52020

  3. Arruda L.: Nonlinear stability properties of periodic travelling wave solutions of the classical Korteweg–de Vries and Boussinesq equations. Port. Math. 66(2), 225–259 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bona J., Sachs R.: Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Commun. Math. Phys. 118, 15–29 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Bronski J., Johnson M.: The modulational instability for a generalized KdV equation. Arch. Ration. Mech. Anal. 197(2), 357–400 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bronski J., Johnson M., Kapitula T.: An index theorem for the stability of periodic traveling waves of KdV type. Proc. R. Soc. Edinb. Sect. A 141(6), 1141–1173 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chugunova M., Pelinovsky D.: On quadratic eigenvalue problems arising in stability of discrete vortices. Linear Algebra Appl. 431, 962–973 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Deconinck, B., Kapitula, T.: On the spectral and orbital stability of spatially periodic stationary solutions of generalized Korteweg–de Vries equations. submitted

  9. Deconinck B., Kapitula T.: The orbital stability of the cnoidal waves of the Korteweg–de Vries equation. Phys. Lett. A 374, 4018–4022 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Fang Y., Grillakis M.: Existence and uniqueness for Boussinesq type equations on a circle. Commun. Part. Differ. Equ. 21(7–8), 1253–1277 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Farah L., Scialom M.: On the periodic “good” Boussinesq equation. Proc. Am. Math. Soc. 138(3), 953–964 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grillakis M.: Analysis of the linearization around a critical point of an infinite dimensional Hamiltonian system. Commun. Pure Appl. Math. 43, 299–333 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  13. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry, I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Grillakis M., Shatah J., Strauss W.: Stability theory of solitary waves in the presence of symmetry, II. J. Funct. Anal. 94, 308–348 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gurski K., Kollár R., Pego R.: Slow damping of internal waves in a stably stratified fluid. Proc. R. Soc. Lond. A 460, 977–994 (2004)

    Article  MATH  ADS  Google Scholar 

  16. Hakkaev, S., Stanislavova, M., Stefanov, A.: Linear stability analysis for periodic traveling waves of the Boussinesq equation and the KGZ system. Proc. Roy. Soc. Edinburgh A (to appear)

  17. Hǎrǎguş M., Gallay T.: Orbital stability of periodic waves for the nonlinear Schrödinger equation. J. Dyn. Differ. Equ. 19, 825–865 (2007)

    Article  Google Scholar 

  18. Hǎrǎguş M., Kapitula T.: On the spectra of periodic waves for infinite-dimensional Hamiltonian systems. Physica D 237(20), 2649–2671 (2008)

    Article  MathSciNet  Google Scholar 

  19. Johnson M.: Nonlinear stability of periodic traveling wave solutions of the generalized Korteweg–de Vries equation. SIAM J. Math. Anal. 41(5), 1921–1947 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Johnson M.: On the stability of periodic solutions of the generalized Benjamin–Bona–Mahony equation. Physica D 239(19), 1892–1908 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Kapitula T.: On the stability of N-solitons in integrable systems. Nonlinearity 20(4), 879–907 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Kapitula T.: The Krein signature, Krein eigenvalues, and the Krein Oscillation Theorem. Indiana Univ. Math. J. 59, 1245–1276 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kapitula, T., Promislow, K.: Spectral and dynamical stability of nonlinear waves. Springer, New York (2013)

  24. Kapitula T., Promislow K.: Stability indices for constrained self-adjoint operators. Proc. Am. Math. Soc. 140(3), 865–880 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kapitula T., Kevrekidis P., Sandstede B.: Counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Physica D 195(3&4), 263–282 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Kapitula T., Kevrekidis P., Sandstede B.: Addendum: counting eigenvalues via the Krein signature in infinite-dimensional Hamiltonian systems. Physica D 201(1&2), 199–201 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Kollár R.: Homotopy method for nonlinear eigenvalue pencils with applications. SIAM J. Math. Anal. 43(2), 612–633 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kostenko A.: On the defect index of quadratic self-adjoint operator pencils. Math. Notes 72(2), 285–290 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Liu Y.: Instability of solitary waves for generalized Boussinesq equations. J. Dyn. Differ. Equ. 5, 537–558 (1993)

    Article  MATH  Google Scholar 

  30. Lyong N.: The spectral properties of a quadratic pencil of operators. Russ. Math. Surv. 48, 180–182 (1993)

    Article  Google Scholar 

  31. Markus, A.: Introduction to the spectral theory of polynomial operator pencils. In: Translation of Mathematical Monographs, vol. 71. American Mathematical Society, Providence (1988)

  32. Pelinovsky D.: Inertia law for spectral stability of solitary waves in coupled nonlinear Schrödinger equations. Proc. R. Soc. Lond. A 461, 783–812 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. Pivovarchik V.: On spectra of a certain class of quadratic operator pencils with one-dimensional linear part. Ukr. Math. J. 59(5), 766–781 (2007)

    Article  MathSciNet  Google Scholar 

  34. Shkalikov, A.: Operator pencils arising in elasticity and hydrodynamics: the instability index formula. In: Gohberg, I., Lancaster, P., Shivakumar, P. (eds.) Recent Developments in Operator Theory and its Applications. Operator Theory Advances and Applications, vol. 87, pp. 358–385 (1996)

  35. Stanislavova M., Stefnov A.: Linear stability analysis for traveling waves of second order in time PDE’s. Nonlinearity 25(9), 2625–2654 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathew A. Johnson.

Additional information

Communicated by P. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronski, J., Johnson, M.A. & Kapitula, T. An Instability Index Theory for Quadratic Pencils and Applications. Commun. Math. Phys. 327, 521–550 (2014). https://doi.org/10.1007/s00220-014-1949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1949-5

Keywords

Navigation