Advertisement

Communications in Mathematical Physics

, Volume 327, Issue 1, pp 279–307 | Cite as

A Cohomology Theory of Grading-Restricted Vertex Algebras

  • Yi-Zhi HuangEmail author
Article

Abstract

We introduce a cohomology theory of grading-restricted vertex algebras. To construct the correct cohomologies, we consider linear maps from tensor powers of a grading-restricted vertex algebra to “rational functions valued in the algebraic completion of a module for the algebra,” instead of linear maps from tensor powers of the algebra to a module for the algebra. One subtle complication arising from such functions is that we have to carefully address the issue of convergence when we compose these linear maps with vertex operators. In particular, for each \({n \in \mathbb{N}}\), we have an inverse system \({\{H^{n}_{m}(V, W)\}_{m \in \mathbb{Z}_{+}}}\) of nth cohomologies and an additional nth cohomology \({H_{\infty}^{n}(V, W)}\) of a grading-restricted vertex algebra V with coefficients in a V-module W such that \({H_{\infty}^{n}(V, W)}\) is isomorphic to the inverse limit of the inverse system \({\{H^{n}_{m}(V, W)\}_{m\in \mathbb{Z}_{+}}}\). In the case of n = 2, there is an additional second cohomology denoted by \({H^{2}_{\frac{1}{2}}(V, W)}\) which will be shown in a sequel to the present paper to correspond to what we call square-zero extensions of V and to first order deformations of V when W = V.

Keywords

Modulus Space Vertex Operator Vertex Operator Algebra Vertex Algebra Cohomology Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.
    André, M.: Méthode simpliciale en algèbre homologique et algèbre commutative. In: Lecture notes mathematics, Vol. 32, Berlin: Springer, 1967Google Scholar
  2. BPZ.
    Belavin A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetries in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. B1.
    Borcherds R.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA 83, 3068–3071 (1986)ADSCrossRefMathSciNetGoogle Scholar
  4. B2.
    Borcherds, R.: Vertex algebras. In: Kashiwara, A., Matsuo, A., Saito, K., Satake, I. (eds.) Topological field theory, primitive forms and related topics (Kyoto, 1996), Progr. Math., Vol. 160, Boston, MA: Birkhäuser Boston, 1998, pp. 35–77Google Scholar
  5. CE.
    Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Amer. Math. 930 Soc. 63, 85–124 (1948)Google Scholar
  6. FHL.
    Frenkel, I., Huang, Y.-Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Memoirs American Math. Soc. 104, 1–64 (1993)Google Scholar
  7. FLM.
    Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the monster. In: Pure and Applied Mathematics, Vol. 134, UK: Academic Press, 1988Google Scholar
  8. GK.
    Ginzburg V., Kapranov M.: Koszul duality for operads. Duke Math. J. 76, 203–272 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  9. Ha.
    Harrison D.K.: Commutative algebras and cohomology. Trans. Am. Math. Soc. 104, 191–204 (1962)CrossRefzbMATHGoogle Scholar
  10. Ho.
    Hochschild G.: On the cohomology groups of an associative algebra. Ann. Math. (2) 46, 58–67 (1945)CrossRefzbMATHMathSciNetGoogle Scholar
  11. Hu1.
    Huang Y.-Z.: Geometric interpretation of vertex operator algebras. Proc. Natl. Acad. Sci. USA 88, 9964–9968 (1991)ADSCrossRefzbMATHGoogle Scholar
  12. Hu2.
    Huang, Y.-Z.: Two-dimensional conformal geometry and vertex operator algebras. In: Progress in Mathematics, Vol 148. Boston: Birkhäuser, 1997Google Scholar
  13. Hu3.
    Huang, Y.-Z.: The first and second cohomologies of grading-restricted vertex algebras. Comm. Math. Phys. (2014, to appear)Google Scholar
  14. HK1.
    Huang Y.-Z., Kong L.: Open-string vertex algebras, tensor categories and operads. Comm. Math. Phys. 250, 433–471 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. HK2.
    Huang Y.-Z., Kong L.: Full field algebras. Comm. Math. Phys. 272, 345–396 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. HL1.
    Huang, Y.-Z., Lepowsky, J.: Vertex operator algebras and operads. In: Corwin, L., Gelfand, I., Lepowsky, J. (eds.) The Gelfand Mathematical Seminars, 1990–1992. Boston: Birkhäuser, 1993, pp. 145–161Google Scholar
  17. HL2.
    Huang, Y.-Z., Lepowsky, J.: Operadic formulation of the notion of vertex operator algebra. In: Proceeding of the 1992 Joint Summer Research Conference on Conformal Field Theory, Topological Field Theory and Quantum Groups, Mount Holyoke, 1992. Contemp. Math., Vol. 175, Providence, RI: American Mathematical Society, 1994, pp. 131–148Google Scholar
  18. KV.
    Kimura, T., Voronov, A.A.: The cohomology of algebras over moduli spaces. In: The moduli spaces of curves (Texel Island, 1994). Progress in Mathematics, Vol. 129, Boston: Birkhäuser Boston, 1995, pp. 305–334Google Scholar
  19. Q.
    Quillen, D.: Homology of Commutative Rings, Mimeographed Notes. Cambridge: MIT, 1968Google Scholar
  20. W.
    Weibel, C.: An introduction to homological algebras. In: Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge: Cambridge University Press, 1994Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsRutgers UniversityPiscatawayUSA
  2. 2.Beijing International Center for Mathematical ResearchPeking UniversityBeijingChina

Personalised recommendations