Skip to main content
Log in

On Nonlinear Functionals of Random Spherical Eigenfunctions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove central limit theorems and Stein-like bounds for the asymptotic behaviour of nonlinear functionals of spherical Gaussian eigenfunctions. Our investigation combines asymptotic analysis of higher order moments for Legendre polynomials and, in addition, recent results on Malliavin calculus and total variation bounds for Gaussian subordinated fields. We discuss applications to geometric functionals like the defect and invariant statistics, e.g., polyspectra of isotropic spherical random fields. Both of these have relevance for applications, especially in an astrophysical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler R.J., Taylor J.E.: Random fields and geometry, Springer monographs in Mathematics. Springer, New York (2007)

    Google Scholar 

  2. Bartolo, N., Dimastrogiovanni, E., Liguori, M., Matarrese, S., Riotto, A.: An estimator for statistical anisotropy from the CMB bispectrum. J. Cosmol. Astropart. Phys. 01(029) (2012). arXiv:1107.4304v2 [astro-ph.CO]

    Google Scholar 

  3. Berry M.V.: Regular and irregular semiclassical wavefunctions. J. Phys. A 10(12), 2083–2091 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Biedenharn L.C., Louck J.D.: The Racah-Wigner algebra in quantum theory, encyclopaedia of mathematics and its applications, vol. 10. Addison-Wesley, Reading, Mass (1981)

    Google Scholar 

  5. Blum G., Gnutzmann S., Smilansky U.: Nodal domains statistics: a criterion for quantum chaos. Phys. Rev. Lett. 88, 114101 (2002)

    Article  ADS  Google Scholar 

  6. Bogomolny E., Schmit C.: Percolation model for nodal domains of chaotic wave functions. Phys. Rev. Lett. 88, 114102 (2002)

    Article  ADS  Google Scholar 

  7. Durrer R.: The cosmic microwave background. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  8. Leonenko N.: Limit theorems for random fields with singular spectrum, mathematics and its applications, vol. 465. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  9. Leonenko, N., Sakhno, L.: On spectral representations of tensor random fields on the sphere, stochastic analysis and its applications, 30(1), 44–66 (2012). arXiv:0912.3389v1[math.PR]

  10. Lewis A.: The full squeezed CMB bispectrum from inflation. J. Cosmol. Astropart. Phys. 06, 023 (2012)

    Article  ADS  Google Scholar 

  11. Malyarenko A.: Invariant random fields in vector bundles and applications to cosmology. Ann. Inst. H. Poincaré 47(4), 1068–1095 (2011) arXiv:0907.4620v1[math.PR]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Marinucci, D.: A central limit theorem and higher order results for the angular bispectrum. Probabl. Theory Relat. Fields, (3-4), 389–409 (2008)

    Google Scholar 

  13. Marinucci, D., Peccati, G.: Random fields on the sphere: representations, limit theorems and cosmological applications, London Mathematical Society Lecture Notes, Cambridge University Press, Cambridge (2011)

  14. Marinucci D., Wigman I.: On the excursion sets of spherical Gaussian eigenfunctions. J. Math. Phys. 52, 093301 (2011). arXiv:1009.4367v1[math.PR]

    Google Scholar 

  15. Marinucci D., Wigman I.: The defect variance of random spherical harmonics. J. Phys. A Math. Theor. 44, 355206 (2011) arXiv:1103.0232v1[math-ph]

    Article  Google Scholar 

  16. Nazarov F., Sodin M.: On the number of nodal domains of random spherical harmonics. Amer. J. Math. 131(5), 1337–1357 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nourdin I., Peccati G.: Stein’s method on Wiener chaos. Probabl. Theory Relat. Fields 145(1–2), 75–118 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nourdin I., Peccati G.: Normal approximations using Malliavin calculus: from Stein’s method to universality. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  19. Peccati G., Taqqu M.S.: Wiener chaos: moments, cumulants and diagrams. Springer, Berlin (2011)

    Book  Google Scholar 

  20. Peccati, G., Tudor, C.: Gaussian limits for vector-valued multiple stochastic integrals. In: Séminaire de Probabilités, XXXVIII, Lecture Notes in Mathematics, Vol. 1857, Berlin: Springer, 2005, pp. 247–262

  21. Sodin M., Tsirelson B.: Random complex zeroes, I. Asymptotic normality. Israel J. Math. 144, 125–149 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sogge C.D.: Concerning the L p norm of spectral clusters for second-order elliptic operators on campact manifolds. J. Funct. Anal. 77, 123–138 (1998)

    Article  MathSciNet  Google Scholar 

  23. Sogge, C.D., Zelditch, S.: Concerning the L 4 norms of typical eigenfunctions on compact surfaces, Recent Development in Geometry and Analysis, ALM 23, Int. Press, Beijing-Boston 407–423 (2012). arXiv:1011.0215v1[math.AP]

  24. Stein E.M., Weiss G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  25. Szego, G.: Orthogonal polynomials, colloquium publications of the American Mathematical Society, 4th Edition (1975)

  26. Varshalovich D.A., Moskalev A.N., Khersonskii V.K.: Quantum theory of angular momentum. World Scientific Press, Teaneck, NJ (1988)

    Book  Google Scholar 

  27. Vilenkin N.Ja., Klimyk A.U.: Representation of Lie groups and special functions. Kluwer, Dordrech (1991)

    Book  MATH  Google Scholar 

  28. Wigman I.: Fluctuation of the nodal length of random spherical harmonics. Commun. Math. Phys. 298((3), 787–831 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Wigman.

Additional information

Communicated by S. Zelditch

Research of D.M. is supported by the ERC Grant 277742 Pascal. Research of I.W. is supported by an EPSRC Grant EP/J004529/1 under the First Grant Scheme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinucci, D., Wigman, I. On Nonlinear Functionals of Random Spherical Eigenfunctions. Commun. Math. Phys. 327, 849–872 (2014). https://doi.org/10.1007/s00220-014-1939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1939-7

Keywords

Navigation