Communications in Mathematical Physics

, Volume 327, Issue 1, pp 117–149 | Cite as

An Index for Confined Monopoles

  • Robert WimmerEmail author


We compute the index and associated spectral density for fluctuation operators which are defined via the Lagrangian of \({\mathcal{N} = 2}\) SQCD in the background of non-abelian confined multimonopoles. To this end we generalize the standard index calculations of Callias and Weinberg to the case of asymptotically nontrivial backgrounds. The resulting index is determined by topological charges. We conjecture that this index counts one quarter of the dimension of the moduli space of confined multimonopoles.


Vortex Modulus Space Gauge Group Zero Mode Index Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auzzi, R., Bolognesi, S., Evslin, J., Konishi, K., Yung, A.: NonAbelian superconductors: Vortices and confinement in N=2 SQCD.Nucl.Phys. B673, 187–216 (2003). arXiv: hep-th/0307287
  2. 2.
    Tong, D., Monopoles in the higgs phase. Phys. Rev. D69, 065003 (2004). arXiv: hep-th/0307302
  3. 3.
    ’t Hooft, G.: Gauge fields with unified weak, electromagnetic, and strong interactions. In: Zichichi, A. (ed.) E.P.S. International Conference on High Energy Physics, Parlermo 23–28 June 1975, Editrice Compositori, Bologna (1976)Google Scholar
  4. 4.
    Mandelstam S.: Vortices and Quark Confinement in nonabelian Gauge Theories. Phys. Lett. B 53, 476–478 (1975)ADSCrossRefGoogle Scholar
  5. 5.
    Konishi, K.: The magnetic monopoles seventy-five years later. Lect. Notes Phys. In: Special volume of Lecture Notes in Physics, Vol. 737, Berlin: Springer 2008, pp. 471–521. arXiv: hep-th/0702102 [in honor of the 65th birthday of Gabriele Veneziano]
  6. 6.
    Tong, D.: Quantum vortex strings: a review. Ann. Phys. 324, 30–52 (2009). [arXiv:0809.5060]Google Scholar
  7. 7.
    Shifman, M., Yung, A.: Supersymmetric Solitons. Cambridge: Cambridge University Press 2009Google Scholar
  8. 8.
    Burke, D., Wimmer, R.: Quantum Energies and tensorial central charges of confined monopoles. JHEP 1110, 134 (2011). [arXiv:1107.3568]
  9. 9.
    Hanany, A., Tong, D.: Vortices, instantons and branes. JHEP 0307, 037 (2003). arXiv: hep-th/0306150
  10. 10.
    Sakai, N., Tong, D.: Monopoles, vortices, domain walls and D-branes: the Rules of interaction. JHEP 0503, 019 (2005). arXiv: hep-th/0501207
  11. 11.
    Callias C.: Index theorems on open spaces. Commun. Math. Phys. 62, 213–234 (1978)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Weinberg E.J.: Parameter counting for multi-monopole solutions. Phys. Rev. D 20, 936–944 (1979)ADSCrossRefGoogle Scholar
  13. 13.
    Weinberg E.J.: Index calculations for the Fermion-Vortex system. Phys. Rev. D 24, 2669 (1981)ADSCrossRefMathSciNetGoogle Scholar
  14. 14.
    Nitta, M., Vinci, W.: Non-Abelian Monopoles in the Higgs Phase. Nucl. Phys. B848, 121–154 (2011). [arXiv:1012.4057]
  15. 15.
    Isozumi, Y., Nitta, M., Ohashi, K., Sakai, N.: All exact solutions of a 1/4 Bogomol’nyi–Prasad–Sommerfield equation. Phys. Rev. D71, 065018 (2005). arXiv: hep-th/0405129
  16. 16.
    Shifman, M., Yung, A.: NonAbelian string junctions as confined monopoles. Phys. Rev. D70, 045004 (2004). arXiv: hep-th/0403149
  17. 17.
    Eto, M., Isozumi, Y., Nitta, M., Ohashi, K.: 1/2, 1/4 and 1/8 BPS equations in SUSY Yang–Mills–Higgs systems: field theoretical brane configurations. Nucl. Phys. B752, 140–172 (2006). arXiv: hep-th/0506257
  18. 18.
    Bais, F., Schroers, B.: Quantisation of monopoles with non-abelian magnetic charge. Nucl. Phys. B512, 250–294 (1998). arXiv: hep-th/9708004
  19. 19.
    Goldhaber, A.S., Rebhan, A., van Nieuwenhuizen, P., Wimmer, R.: Quantum corrections to mass and central charge of supersymmetric solitons. Phys. Rep. 398, 179–219 (2004). arXiv: hep-th/0401152 Google Scholar
  20. 20.
    Rebhan, A., van Nieuwenhuizen, P., Wimmer, R.: Quantum mass and central charge of supersymmetric monopoles: anomalies, current renormalization, and surface terms. JHEP 0606, 056 (2006). arXiv: hep-th/0601029
  21. 21.
    Smilga, A.V.: Lectures on Quantum Chromodynamics. Singapore: World Scientific 2001Google Scholar
  22. 22.
    Bilal, A.: Lectures on Anomalies. [arXiv:0802.0634]
  23. 23.
    Goddard P., Nuyts J., Olive D.I.: Gauge theories and magnetic charge. Nucl. Phys. B 125, 1 (1977)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Weinberg E.J.: Fundamental monopoles and multi-monopole solutions for arbitrary simple gauge groups. Nucl. Phys. B 167, 500 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    Zichichi, A. (ed.): The Magnetic Monopole Fifty Years Later. (Erice, Italy), In: Proceedings of the 19th International School of Subnuclear Physics, vol. 1983. Plenum Press, New York, London (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire de Physique, UMR 5672, CNRS, École Normale Supérieure de LyonUniversité de LyonLyon Cedex 07France

Personalised recommendations