Skip to main content
Log in

Random Walk on the High-Dimensional IIC

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the asymptotic behavior of the exit times of random walk from Euclidean balls around the origin of the incipient infinite cluster in a manner inspired by Kumagai and Misumi (J Theor Probab 21:910–935, 2008). We do this by getting bounds on the effective resistance between the origin and the boundary of these Euclidean balls. We show that the geometric properties of long-range percolation clusters are significantly different from those of finite-range clusters. We also study the behavior of random walk on the backbone of the IIC and we prove that the Alexander–Orbach conjecture holds for the incipient infinite cluster in high dimensions, both for long-range percolation and for finite-range percolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman M.: On the number of incipient spanning clusters. Nucl. Phys. B 485, 551–582 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Alexander S., Orbach R.: Density of states on fractals: “fractons”. J. Phys. (Paris) Lett. 43, L625–L631 (1982)

    Article  Google Scholar 

  3. Barlow M.: Random walks on supercritical percolation clusters. Ann. Probab. 32(4), 3024–3084 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barlow M., Járai A., Kumagai T., Slade G.: Random walk on the incipient infinite cluster for oriented percolation in high dimensions. Commun. Math. Phys. 278(2), 385–431 (2008)

    Article  ADS  MATH  Google Scholar 

  5. Barlow, M.T., Kumagai, T.: Random walk on the incipient infinite cluster on trees. Illinois J. Math. 50(1–4), 33–65 (2006) (electronic)

    Google Scholar 

  6. Barsky D., Aizenman M.: Percolation critical exponents under the triangle condition. Ann. Probab. 19, 1520–1536 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. van den Berg J, Kesten H.: Inequalities with applications to percolation and reliability. J. Appl. Probab. 22, 556–569 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berger N., Gantert N., Peres Y.: The speed of biased random walk on percolation clusters. Probab. Theor. Relat. Fields 126(2), 221–242 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

  10. Borgs C., Chayes J., van der Hofstad R., Slade G., Spencer J.: Random subgraphs of finite graphs. II. The lace expansion and the triangle condition. Ann. Probab. 33(5), 1886–1944 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, L.-C., Sakai, A.: Critical two-point functions for long-range statistical-mechanical models in high dimensions. Ann. Probab. (to appear)

  12. Croydon D.A.: Random walk on the range of random walk. J. Stat. Phys. 136(2), 349–372 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Croydon, D.A., Hambly, B.M., Kumagai, T.: Convergence of mixing times for sequences of random walks on finite graphs. Electron. J. Probab. 17(3), 32 (2012)

    Google Scholar 

  14. Doyle, P., Snell, J.: Random walks and electric networks, volume 22 of Carus Mathematical Monographs. Mathematical Association of America, Washington, DC (1984)

  15. Fitzner, R.: Non-backtracking lace expansion. PhD thesis, Eindhoven University of Technology (2013)

  16. Grimmett, G.: Percolation, 2nd edn. Springer, Berlin (1999)

  17. Hara T.: Decay of correlations in nearest-neighbor self-avoiding walk, percolation, lattice trees and animals. Ann. Probab. 36(2), 530–593 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hara T., van der Hofstad R, Slade G.: Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab. 31(1), 349–408 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hara T., Slade G.: Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys. 128, 333–391 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Hara, T., Slade, G.: Mean-field behaviour and the lace expansion. In: Grimmett, G. (ed.) Probability and Phase Transition. Kluwer, Dordrecht (1994)

  21. Heydenreich, M., van der Hofstad, R., Hulshof, T.: High-dimensional incipient infinite clusters revisited. arXiv:1108.4325v2 (2012)

  22. Heydenreich M., van der Hofstad R., Hulshof T., Miermont G.: Backbone scaling limit of the high-dimensional IIC (in preparation)

  23. Heydenreich M., van der Hofstad R., Sakai A.: Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132(5), 1001–1049 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Heydenreich M., van der Hofstad R.: Random graph asymptotics on high-dimensional tori II: volume, diameter and mixing time. Probab. Theory Relat. Fields 149(3–4), 397–415 (2011)

    Article  MATH  Google Scholar 

  25. van der Hofstad R., den Hollander F., Slade G.: Construction of the incipient infinite cluster for spread-out oriented percolation above 4+1 dimensions. Commun. Math. Phys. 231(3), 435–461 (2002)

    Article  ADS  MATH  Google Scholar 

  26. van der Hofstad R., den den Hollander F., Slade G.: The survival probability for critical spread-out oriented percolation above 4+1 dimensions. II. Expansion. Ann. Inst. H. Poincaré Probab. Stat. 5(5), 509–570 (2007)

    Google Scholar 

  27. van der Hofstad R., Járai A.: The incipient infinite cluster for high-dimensional unoriented percolation. J. Stat. Phys. 114(3–4), 625–663 (2004)

    Article  ADS  MATH  Google Scholar 

  28. van der Hofstad R., Sapozhnikov, A.: Cycle structure of percolation on high-dimensional tori. arXiv:1109.1233 (2011).

  29. Járai A.: Incipient infinite percolation clusters in 2D. Ann. Probab. 31(1), 444–485 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  30. Járai, A., Nachmias, A.: Electrical resistance of the low dimensional critical branching random walk. arXiv:1305.1092 (2013)

  31. Kesten H.: The critical probability of bond percolation on the square lattice equals \({\frac{1}{2}}\) . Commun. Math. Phys. 74(1), 41–59 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Kesten H.: The incipient infinite cluster in two-dimensional percolation. Probab. Theor. Relat. Fields 73(3), 369–394 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. Kesten H.: Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Probab. Stat. 22(4), 425–487 (1986)

    MATH  MathSciNet  Google Scholar 

  34. Kozma G., Nachmias A.: The Alexander–Orbach conjecture holds in high dimensions. Invent. Math. 178, 635–654 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Kozma G., Nachmias A.: Arm exponents in high-dimensional percolation. J. Am. Math. Soc. 24, 375–409 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kumagai T., Misumi J.: Heat kernel estimates for strongly recurrent random walk on random media. J. Theor. Probab. 21, 910–935 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Leyvraz F., Stanley H.: To what class of fractals does the Alexander–Orbach conjecture apply?. Phys. Rev. Lett. 51, 2048–2051 (1983)

    Article  ADS  Google Scholar 

  38. Nachmias A., Peres Y.: Critical random graphs: diameter and mixing time. Ann. Probab. 36(4), 1267–1286 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Sapozhnikov A.: Upper bound on the expected size of the intrinsic ball. Electron. Commun. Probab. 15, 297–298 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Hulshof.

Additional information

Communicated by H. Spohn

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heydenreich, M., van der Hofstad, R. & Hulshof, T. Random Walk on the High-Dimensional IIC. Commun. Math. Phys. 329, 57–115 (2014). https://doi.org/10.1007/s00220-014-1931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1931-2

Keywords

Navigation