Skip to main content
Log in

On the Weak Solutions to the Maxwell–Landau–Lifshitz Equations and to the Hall–Magneto–Hydrodynamic Equations

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we deal with weak solutions to the Maxwell–Landau–Lifshitz equations and to the Hall–Magneto–Hydrodynamic equations. First we prove that these solutions satisfy some weak-strong uniqueness property. Then we investigate the validity of energy identities. In particular we give a sufficient condition on the regularity of weak solutions to rule out anomalous dissipation. In the case of the Hall–Magneto–Hydrodynamic equations we also give a sufficient condition to guarantee the magneto-helicity identity. Our conditions correspond to the same heuristic scaling as the one introduced by Onsager in hydrodynamic theory. Finally we examine the sign, locally, of the anomalous dissipations of weak solutions obtained by some natural approximation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acheritogaray M., Degond P., Frouvelle A., Liu J.-G.: Kinetic formulation and global existence for the Hall–Magneto–Hydrodynamics system. Kinet. Relat. Models 4(4), 901–918 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alouges F., Soyeur A.: On global weak solutions for Landau-Lifshitz equations: existence and non uniqueness. Nonlinear Anal. Theory Methods Appl. 18(11), 1071–1084 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arnold, V., Khesin, B.: Topological Methods in Hydrodynamics. Applied Mathematical Sciences, Vol. 125. New York: Springer, 1998, xvi+374

  4. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Berlin: Springer

  5. Bardos C., Titi E.: Loss of smoothness and energy conserving rough weak solutions for the 3d Euler equations. Discret. Contin. Dyn. Syst. Ser. S 3(2), 185–197 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bergh, J., Löfström, J.: Interpolation Spaces. An introduction. Grundlehren der Mathematischen Wissenschaften, No. 223. Berlin: Springer, 1976

  7. Brown W.F.: Micromagnetics. Interscience Publisher, Willey, New York (1963)

    Google Scholar 

  8. Buckmaster, T.: Onsager’s conjecture almost everywhere in time. arXiv:1304.1049 (2013) (preprint)

  9. Caffarelli L., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35(6), 771–831 (1982)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Carbou G., Fabrie P.: Time average in micromagnetism. J. Differ. Equ. 147, 383–409 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. Carbou G., Fabrie P.: regular solutions for Landau-Lifshitz equation in \({\mathbb{R}^3}\) . Commun. Appl. Anal. 5(1), 17–30 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Carbou G., Fabrie P.: regular solutions for Landau-Lifshitz Equation in a Bounded Domain. Diff. Integral Eqns. 14, 219–229 (2001)

    MathSciNet  Google Scholar 

  13. Chae D.: Remarks on the helicity of the 3-D incompressible Euler equations. Commun. Math. Phys. 240, 501–507 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  14. Chae, D., Degond, P., Liu, J.-G.: Well-posedness for Hall-magnetohydrodynamics. Ann. I. H. Poincare-AN. Preprint arXiv:1212.3919 (to appear)

  15. Chae D., Schonbek M.: On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255(11), 3971–3982 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Caflisch R., Klapper I., Steele G.: Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun. Math. Phys. 184(2), 443–455 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Chemin J.-Y.: About weak-strong uniqueness for the 3D incompressible Navier-Stokes system. Commun. Pure Appl. Math. LXIV, 1587–1598 (2011)

    Article  MathSciNet  Google Scholar 

  18. Chemin J.-Y., Lerner N.: Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes. J. Differ. Equ. 121(2), 314–328 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Cheskidov A., Constantin P., Friedlander S., Shvydkoy R.: Energy conservation and Onsager’s conjecture for the Euler equations. Nonlinearity 21(6), 1233–1252 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cheskidov, A., Friedlander, S., Shvydkoy, R.: On the energy equality for weak solutions of the 3D Navier-Stokes equations. Adv. Math. Fluid Mech. 171–175 (2010)

  21. Constantin, P., E, W., Titi, E.: Onsager’s conjecture on the energy conservation for solutions of Euler’s equation. Commun. Math. Phys., 165(1), 207–209 (1994)

  22. Dascaliuc R., Grujić Z.: Energy cascades and flux locality in physical scales of the 3D Navier-Stokes equations. Commun. Math. Phys. 305(1), 199–220 (2011)

    Article  ADS  MATH  Google Scholar 

  23. Dascaliuc R., Grujić Z.: Anomalous dissipation and energy cascade in 3D inviscid flows. Commun. Math. Phys. 309(3), 757–770 (2012)

    Article  ADS  MATH  Google Scholar 

  24. Duvaut G., Lions J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  25. Santugini-Repiquet, K.: Regularity of weak solutions to the Landau-Lifshitz system in bounded regular domains. Electron. J. Differ. Equ. 141 (2007)

  26. De Lellis C., Szekelyhidi L. Jr: The Euler equations as a differential inclusion. Ann. Math. (2) 170(3), 1417–1436 (2009)

    Article  MATH  Google Scholar 

  27. De Lellis C., Szkelyhidi L. Jr: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ding S., Liu X., Wang C.: The Landau-Lifshitz-Maxwell equation in dimension three. Pac. J. Math. 243(2), 243–276 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Duchon J., Robert R.: Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13, 249–255 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Eyink G.: Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer. Phys. D 78, 222–240 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Feireisl E., Novotný A.: Weak-strong uniqueness property for the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal. 204(2), 683–706 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Farwig R., Taniuchi Y.: On the energy equality of Navier-Stokes equations in general unbounded domains. Arch. Math. 95(5), 447–456 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Freedman M., He Z.-X.: Divergence-free fields: energy and asymptotic crossing number. Ann. Math. 134(1), 189–229 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  34. Galanti, B., Kleeorin, N., Rogachevskii, I.: Phys. Plasmas 1(12) (1994)

  35. Guo B., Ding S.: Landau-Lifshitz Equations. World Scientific, Singapore (2008)

    MATH  Google Scholar 

  36. Guo B., Hong M.: The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc. Var. 1(3), 311–334 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  37. Guo B., Su F.: Global weak solution for the Landau-Lifshitz-Maxwell equation in three space dimensions. J. Math. Anal. Appl. 211(1), 326–346 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hélein, F., Wood, J. C.: Harmonic maps, Handbook of Global Analysis, Vol. 1213. Amsterdam: Elsevier Sci. B.V., 2008, pp. 417–491

  39. Homann H., Grauer R.: Bifurcation analysis of magnetic reconnection in Hall-MHD systems. Phys. D 208, 59–72 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Joly J.L., Métivier G., Rauch J.: Global solutions to Maxwell equations in a ferromagnetic medium. Ann. Henri Poincaré 1(2), 307–340 (2000)

    Article  ADS  MATH  Google Scholar 

  41. Landau, L., Lifshitz, E.: Électrodynamique des milieux continus. Cours de physique théorique, t. 8. Mir, Moscou, 1969

  42. Lighthill M.J.: Studies on magneto-hydrodynamic waves and other anisotropic wave motions. Philos. Trans. Roy. Soc. Lond. Ser. A 252, 397–430 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. Onsager, L.: Statistical hydrodynamics. Nuovo Cimento (9), 6 (Supplemento, 2(Convegno Internazionale di Meccanica Statistica)), 279–287 (1949)

  44. Scheffer V.: An inviscid flow with compact support in space-time. J. Geom. Anal. 3, 343–401 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  45. Shnirelman A.: On the nonuniqueness of weak solution of the Euler equation. Comm. Pure Appl. Math. 50, 1261–1286 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  46. Shvydkoy R.: On the energy of inviscid singular flows. J. Math. Anal. Appl. 349, 583–595 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  47. Shvydkoy R.: Lectures on the Onsager conjecture. Discret. Contin. Dyn. Syst. Ser. S 3(3), 473–496 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  48. Smirnov, S.K.: Decomposition of solenoidal vector charges into elementary solenoids, and the structure of normal one-dimensional flows. (Russian) Algebra i Analiz 5(4), 206–238 (1993) (translation in St. Petersburg Math. J. 5(4), 841–867 (1994))

  49. Sulem P.-L., Sulem C., Bardos C.: On the continuous limit for a system of classical spins. Commun. Math. Phys. 107, 431–454 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. Thiaville A., García J.M., Dittrich R., Miltat J., Schrefl T.: Micromagnetic study of Bloch-point-mediated vortex core reversal. Phys. Rev. B 67, 094410 (2003)

    Article  ADS  Google Scholar 

  51. Visintin A.: On Landau-Lifshitz equations for ferromagnetism. Jpn. J. Appl. Math. 2(1), 69–84 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  52. Zhou Y.: On the energy and helicity conservations for the 2-D quasi-geostrophic equation. Ann. Henri Poincaré 6(4), 791–799 (2005)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Sueur.

Additional information

Communicated by W. Schlag

E. Dumas support by The Nano-Science Foundation, Grenoble, Project HM-MAG, is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumas, E., Sueur, F. On the Weak Solutions to the Maxwell–Landau–Lifshitz Equations and to the Hall–Magneto–Hydrodynamic Equations. Commun. Math. Phys. 330, 1179–1225 (2014). https://doi.org/10.1007/s00220-014-1924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1924-1

Keywords

Navigation