Skip to main content
Log in

Capillary–Gravity Water Waves with Discontinuous Vorticity: Existence and Regularity Results

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper we construct periodic capillarity–gravity water waves with an arbitrary bounded vorticity distribution. This is achieved by re-expressing, in the height function formulation of the water wave problem, the boundary condition obtained from Bernoulli’s principle as a nonlocal differential equation. This enables us to establish the existence of weak solutions of the problem by using elliptic estimates and bifurcation theory. Secondly, we investigate the a priori regularity of these weak solutions and prove that they are in fact strong solutions of the problem, describing waves with a real-analytic free surface. Moreover, assuming merely integrability of the vorticity function, we show that any weak solution corresponds to flows having real-analytic streamlines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Gewöhnliche Differentialgleichungen. In: de Gruyter Lehrbuch. Berlin: Walter de Gruyter & Co., 1983 (de Gruyter Textbook)

  2. Clamond D.: Note on the velocity and related fields of steady irrotational two-dimensional surface gravity waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 370(1964), 1572–1586 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Constantin A.: The trajectories of particles in Stokes waves. Invent. Math. 166(3), 523–535 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Constantin, A.: Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis. In: CBMS-NSF Conference Series in Applied Mathematics, SIAM, Philadelphia, Vol. 81, 2011

  5. Constantin A., Ehrnström M., Wahlén E.: Symmetry of steady periodic gravity water waves with vorticity. Duke Math. J. 140(3), 591–603 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Constantin A., Escher J.: Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech. 498(1), 171–181 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Constantin A., Escher J.: Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Constantin A., Strauss W.: Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57(4), 481–527 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Constantin A., Strauss W.: Pressure beneath a Stokes wave. Commun. Pure Appl. Math. 63(4), 533–557 (2010)

    MATH  MathSciNet  Google Scholar 

  10. Constantin A., Strauss W.: Periodic traveling gravity water waves with discontinuous vorticity. Arch. Ration. Mech. Anal. 202(1), 133–175 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Constantin A., Varvaruca E.: Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Ration. Mech. Anal. 199(1), 33–67 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  13. Escher J.: Regularity of rotational travelling water waves. Philos. Trans. R. Soc. Lond. A 370, 1602–1615 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Escher, J., Matioc, B.-V.: On the analyticity of periodic gravity water waves with integrable vorticity function. Differ. Integral Equ. 27(3–4), 217–232 (2014)

    Google Scholar 

  15. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. In: Studies in Advanced Mathematics. Boca Raton: CRC Press, 1992

  16. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 2001

  17. Henry D.: Particle trajectories in linear periodic capillary and capillary–gravity deep-water waves. J. Nonlinear Math. Phys. 14, 1–7 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. Henry D.: Analyticity of the streamlines for periodic travelling free surface capillary–gravity water waves with vorticity. SIAM J. Math. Anal. 42(6), 3103–3111 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Henry D.: Analyticity of the free surface for periodic travelling capillary–gravity water waves with vorticity. J. Math. Fluid Mech. 14(2), 249–254 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  20. Henry D.: Regularity for steady periodic capillary water waves with vorticity. Philos. Trans. R. Soc. Lond. A 370, 1616–1628 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Hsu H.-C., Chen Y.-Y., Hsu J.R.C., Tseng W.-J.: Nonlinear water waves on uniform current in Lagrangian coordinates. J. Nonlinear Math. Phys. 16(1), 47–61 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. Jones M.: Small amplitude capillary–gravity waves in a channel of finite depth. Glasgow Math. J. 31(2), 141–160 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  23. Jones M., Toland J.: The bifurcation and secondary bifurcation of capillary–gravity waves. Proc. R. Soc. London Ser. A 399(1817), 391–417 (1985)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Jones M., Toland J.: Symmetry and the bifurcation of capillary–gravity waves. Arch. Rational Mech. Anal. 96(1), 29–53 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Jonsson, I.G.: Wave-Current Interactions, Vol. 9. New York: Wiley, 1990

  26. Ko J., Strauss W.: Large-amplitude steady rotational water waves. Eur. J. Mech. B Fluids 27, 96–109 (2007)

    Article  MathSciNet  Google Scholar 

  27. Ko J., Strauss W.: Effect of vorticity on steady water waves. J. Fluid Mech. 608, 197–215 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. Chen H., Li W.-X., Wang L.-J.: Regularity of traveling free surface water waves with vorticity. Nonlinear Sci. 23(6), 1111–1142 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  29. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. In: Progress in Nonlinear Differential Equations and their Applications, Vol. 16. Basel: Birkhäuser, 1995

  30. Martin, C.I.: Local bifurcation and regularity for steady periodic capillary–gravity water waves with constant vorticity. Nonlinear Anal. Real World Appl. 14, 131–149 (2013)

    Google Scholar 

  31. Martin, C.I., Matioc, B.-V.: Existence of capillary–gravity water waves with piecewise constant vorticity. J. Differential Equations 256(8), 3086–3114 (2014)

    Google Scholar 

  32. Martin, C.I., Matioc, B.-V.: Existence of Wilton ripples for water waves with constant vorticity and capillary effects. SIAM J. Appl. Math. 73(4), 1582–1595 (2013)

    Google Scholar 

  33. Matioc, A.-V.: Steady internal water waves with a critical layer bounded by the wave surface. J. Nonlinear Math. Phys. 19(1), 1250008, 21p, (2012)

    Google Scholar 

  34. Matioc A.-V., Matioc B.-V.: On the symmetry of periodic gravity water waves with vorticity. Differ. Integral Equ. 26(1-2), 129–140 (2013)

    MATH  MathSciNet  Google Scholar 

  35. Matioc B.-V.: Analyticity of the streamlines for periodic traveling water waves with bounded vorticity. Int. Math. Res. Not. 17, 3858–3871 (2011)

    MathSciNet  Google Scholar 

  36. Okamoto, H., Shōji, M.: The mathematical theory of permanent progressive water-waves. Adv. Ser. Nonlinear Dynam., Vol. 20, Hackensack: World Scientific Pub Co Inc, 2001

  37. Okuda K.: Internal flow structure of short wind waves. J. Oceanogr. Soc. Jpn. 38, 28–42 (1982)

    Article  Google Scholar 

  38. Pattiaratchi C.B., Collins M.B.: Sediment transport under waves and tidal currents: a case study from the northern Bristol Channel, U.K. Mar. Geol. 56(1–4), 27–40 (1984)

    Article  Google Scholar 

  39. Phillips O.M., Banner M.L.: Wave breaking in the presence of wind drift and swell. J. Fluid Mech. 66, 625–640 (1974)

    Article  ADS  MATH  Google Scholar 

  40. Reeder J., Shinbrot M.: On Wilton ripples. II. Rigorous results. Arch. Rational Mech. Anal. 77(4), 321–347 (1981)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. Telesda Silva A.F., Peregrine D.H.: Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281–302 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  42. Thomas, G., Klopman, G.: Wave–Current Interactions in the Nearshore Region. Southampton, UK: WIT, 1997

  43. Umeyama M.: Eulerian–Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 370(1964), 1687–1702 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. Wahlén, E.: Steady periodic capillary–gravity waves with vorticity. SIAM J. Math. Anal. 38(3), 921–943 (electronic), (2006)

    Google Scholar 

  45. Weiss G.S., Zhang G.: A free boundary approach to two-dimensional steady capillary gravity water waves. Arch. Ration. Mech. Anal. 203(3), 747–768 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca-Voichita Matioc.

Additional information

Communicated by W. Schlag

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matioc, AV., Matioc, BV. Capillary–Gravity Water Waves with Discontinuous Vorticity: Existence and Regularity Results. Commun. Math. Phys. 330, 859–886 (2014). https://doi.org/10.1007/s00220-014-1918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1918-z

Keywords

Navigation