Advertisement

Communications in Mathematical Physics

, Volume 330, Issue 1, pp 123–152 | Cite as

Quantized Abelian Principal Connections on Lorentzian Manifolds

  • Marco Benini
  • Claudio DappiaggiEmail author
  • Alexander Schenkel
Article

Abstract

We construct a covariant functor from a category of Abelian principal bundles over globally hyperbolic spacetimes to a category of *-algebras that describes quantized principal connections. We work within an appropriate differential geometric setting by using the bundle of connections and we study the full gauge group, namely the group of vertical principal bundle automorphisms. Properties of our functor are investigated in detail and, similar to earlier works, it is found that due to topological obstructions the locality property of locally covariant quantum field theory is violated. Furthermore, we prove that, for Abelian structure groups containing a nontrivial compact factor, the gauge invariant Borchers-Uhlmann algebra of the vector dual of the bundle of connections is not separating on gauge equivalence classes of principal connections. We introduce a topological generalization of the concept of locally covariant quantum fields. As examples, we construct for the category of principal U(1)-bundles two natural transformations from singular homology functors to the quantum field theory functor that can be interpreted as the Chern class and the electric charge. In this case we also prove that the electric charges can be consistently set to zero, which yields another quantum field theory functor that satisfies all axioms of locally covariant quantum field theory.

Keywords

Natural Transformation Principal Bundle Lorentzian Manifold Covariant Functor Cauchy Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ada69.
    Adams J.F.: Lectures on Lie groups. W. A. Benjamin, Inc., New York-Amsterdam (1969)zbMATHGoogle Scholar
  2. Ati57.
    Atiyah M.F.: Complex analytic connections in fibre bundles. Trans. Amer. Math. Soc. 85, 181–207 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  3. Ati89.
    Atiyah M.: Topological quantum field theories. Inst. Hautes Etudes Sci. Publ. Math. 68, 175 (1989)CrossRefMathSciNetGoogle Scholar
  4. Bau09.
    Baum, H.: Eichfeldtheorie: Eine Einführung in die Differentialgeometrie auf Faserbündeln. Springer, Berlin (2009)Google Scholar
  5. Bon76.
    Bongaarts P.J.M.: Maxwell’s equations in axiomatic quantum field theory. 1. Field tensor and potentials. J. Math. Phys. 18, 1510 (1977)ADSCrossRefMathSciNetGoogle Scholar
  6. BDF09.
    Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541 (2009). [arXiv:0901.2038 [math-ph]]
  7. BDH13.
    Benini, M., Dappiaggi, C., Hack, T.-P.: Quantum field theory on curved backgrounds—A Primer. Int. J. Mod. Phys. A 28, 1330023 (2013). [arXiv:1306.0527 [gr-qc]]
  8. BDS14.
    Benini, M., Dappiaggi, C., Schenkel, A.: Quantum field theory on affine bundles. Ann. Henri Poincaré 15, 17–211(2014). [arXiv:1210.3457 [math-ph]]
  9. BFV03.
    Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). [math-ph/0112041]Google Scholar
  10. BG11.
    Bär, C., Ginoux, N.: Classical and quantum fields on Lorentzian manifolds. Springer Proc. Math. 17, 359 (2011). [arXiv:1104.1158 [math-ph]]
  11. BGP07.
    Bär, C., Ginoux, N., Pfäffle, F.: Wave equations on Lorenzian manifolds and quantization. Zürich, Switzerland: Eur. Math. Soc. (2007). [arXiv:0806.1036 [math.DG]]
  12. BS05.
    Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic space-times. Commun. Math. Phys. 257, 43 (2005). [gr-qc/0401112]Google Scholar
  13. BT82.
    Bott R., Tu L.W.: Differential forms in algebraic topology. Graduate Texts in Mathematics, 82, pp. xiv+331. Springer, New York, Berlin (1982)CrossRefGoogle Scholar
  14. Dim92.
    Dimock J.: Quantized electromagnetic field on a manifold. Rev. Math. Phys. 4, 223 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  15. DL12.
    Dappiaggi, C., Lang, B.: Quantization of Maxwell’s equations on curved backgrounds and general local covariance. Lett. Math. Phys. 101, 265 (2012). [arXiv:1104.1374 [gr-qc]]
  16. DS13.
    Dappiaggi, C., Siemssen, D.: Hadamard states for the vector potential on asymptotically flat spacetimes. Rev. Math. Phys. 25, 1350002 (2013). [arXiv:1106.5575 [gr-qc]]Google Scholar
  17. Few13.
    Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25, 1350008 (2013). [arXiv:1201.3295 [math-ph]]
  18. FH12.
    Fewster, C.J., Hunt, D.S.: Quantization of linearized gravity in cosmological vacuum spacetimes. Rev. Math. Phys. 25, 1330003 (2013). [arXiv:1203.0261 [math-ph]]Google Scholar
  19. FR13.
    Fredenhagen, K., Rejzner, K.: Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory. Commun. Math. Phys. 317, 697 (2013). [arXiv:1110.5232 [math-ph]]Google Scholar
  20. FV12.
    Fewster, C.J., Verch, R.: Dynamical locality and covariance: What makes a physical theory the same in all spacetimes? Ann. Henri Poincare 13, 1613 (2012). [arXiv:1106.4785 [math-ph]]
  21. Har11.
    Harder, G.: Lectures on algebraic geometry I. Sheaves, cohomology of sheaves, and applications to Riemann surfaces. Aspects of Mathematics, E 35, pp. xiv+299. Vieweg + Teubner Verlag, Wiesbaden (2011)Google Scholar
  22. Hol08.
    Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20, 1033 (2008). [arXiv:0705.3340 [gr-qc]]Google Scholar
  23. HS13.
    Hack, T.-P., Schenkel, A.: Linear bosonic and fermionic quantum gauge theories on curved spacetimes. Gen. Rel. Grav. 45, 877 (2013). [arXiv:1205.3484 [math-ph]]
  24. KMS93.
    Kolář I., Michor P.W., Slovák J.: Natural operations in differential geometry. Springer, Berlin (1993)zbMATHGoogle Scholar
  25. KN96.
    Kobayashi S., Nomizu K.: Foundations of differential geometry Vol. I. Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York (1996)Google Scholar
  26. Mar93.
    Marolf, D.M.: The Generalized Peierls bracket. Ann. Phys. 236, 392 (1994). [hep-th/9308150]Google Scholar
  27. Pei52.
    Peierls R.E.: The Commutation laws of relativistic field theory. Proc. Roy. Soc. Lond. A 214, 143 (1952)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. Pfe09.
    Pfenning, M.J.: Quantization of the Maxwell field in curved spacetimes of arbitrary dimension. Class. Quant. Grav. 26, 135017 (2009). [arXiv:0902.4887 [math-ph]]
  29. SDH12.
    Sanders, K., Dappiaggi, C., Hack, T.-P.: Electromagnetism, local covariance, the Aharonov-Bohm effect and Gauss’ law (2012). To appear in Commun. Math. Phys. arXiv:1211.6420 [math-ph]
  30. Str67.
    Strocchi F.: Gauge Problem in Quantum Field Theory. Phys. Rev. 162, 1429 (1967)ADSCrossRefMathSciNetGoogle Scholar
  31. Str70.
    Strocchi F.: Gauge Problem in Quantum Field Theory. III. Quantization of Maxwell Equations and Weak Local Commutativity. Phys. Rev. D 2, 2334 (1970)ADSCrossRefMathSciNetGoogle Scholar
  32. Ver01.
    Verch, R.: A spin statistics theorem for quantum fields on curved space-time manifolds in a generally covariant framework. Commun. Math. Phys. 223, 261 (2001). [math-ph/0102035]Google Scholar
  33. Voi07.
    Voisin C.: Hodge theory and complex algebraic geometry I. Cambridge Studies in Advanced Mathematics, 76, pp. x+322. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  34. Wal12.
    Waldmann, S.: Geometric Wave Equations. arXiv:1208.4706 [math.DG]
  35. Zah12.
    Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26, 130012 (2014). arXiv:1210.4031 [math-ph]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Marco Benini
    • 1
    • 3
  • Claudio Dappiaggi
    • 1
    Email author
  • Alexander Schenkel
    • 2
  1. 1.Dipartimento di FisicaUniversità di Pavia & INFNPaviaItaly
  2. 2.Fachgruppe MathematikBergische Universität WuppertalWuppertalGermany
  3. 3.II. Institut für Theoretische PhysikUniversität HamburgHamburgGermany

Personalised recommendations