Communications in Mathematical Physics

, Volume 330, Issue 1, pp 69–105 | Cite as

Blow Up Dynamics for Equivariant Critical Schrödinger Maps

  • Galina PerelmanEmail author


For the Schrödinger map equation \({u_t = u \times \triangle u \, {\rm in} \, \mathbb{R}^{2+1}}\) , with values in S 2, we prove for any \({\nu > 1}\) the existence of equivariant finite time blow up solutions of the form \({u(x, t) = \phi(\lambda(t) x) + \zeta(x, t)}\) , where \({\phi}\) is a lowest energy steady state, \({\lambda(t) = t^{-1/2-\nu}}\) and \({\zeta(t)}\) is arbitrary small in \({\dot H^1 \cap \dot H^2}\) .


Global Existence Remote Region Sulem Convergent Expansion Bootstrap Assumption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angenent, S., Hulshof, J.: Singularities at t = in equivariant harmonic map flow, Contemp. Math., vol. 367, Geometric Evolution Equations, vol. 115. Amer. Math. Soc., Providence (2005)Google Scholar
  2. 2.
    Van den Bergh, J., Hulshof, J., King, J.: Formal asymptotics of bubbling in the harmonic map heat flow. SIAM J. Appl. Math. 63(o5), 1682–1717Google Scholar
  3. 3.
    Bejenaru I., Ionescu A., Kenig C., Tataru D.: Global Schrödinger maps in dimension \({d \geq 2}\) : small data in the initial sobolev spaces. Ann. Math. 173, 1443–1506 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bejenaru, I., Ionescu, A., Kenig, C., Tataru, D.: Equivariant Schrödinger maps in two spatial dimensions. arXiv:1112.6122v1Google Scholar
  5. 5.
    Bejenaru, I., Tataru, D.: Near soliton evolution for equivariant Schrödinger Maps in two spatial dimensions. Mem. Am. Math. Soc. 228(1069) (2013). arXiv:1009.1608Google Scholar
  6. 6.
    Chang N.-H., Shatah J., Uhlenbeck K.: Schrödinger maps. Commun. Pure Appl. Math. 53(5), 590–602 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Grillakis M., Stefanopoulos V.: Lagrangian formulation, energy estimates and the Schrödinger map prolem. Commun. PDE 27, 1845–1877 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Grotowski J., Shatah J.: Geometric evolution equations in critical dimensions. Calc. Var. Partial Differ. Equ. 30(4), 499–512 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Gustafson S., Kang K., Tsai T.P.: Schrödinger flow near harmonic maps. Commun. Pure Appl. Math. 60(4), 463–499 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Gustafson S., Kang K., Tsai T.-P.: Asymptotic stability of harmonic maps under the Schrödinger flow. Duke Math. J. 145(3), 537–583 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gustafson, S., Koo, E.: Global well-posedness for 2D radial Schrödinger maps into the sphere. arXiv:1105.5659Google Scholar
  12. 12.
    Gustafson S., Nakanishi K., Tsai T.-P.: Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on R2. Commun. Math. Phys. 300(1), 205–242 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Krieger J., Schlag W., Tataru D.: Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171(3), 543615 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    McGahagan H.: An approximation scheme for Schrödinger maps. Commun. Partial Differ. Equ. 32, 37540 (2007)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Merle, F., Raphaël, P., Rodnianski, I.: Blow up dynamics for smooth data equivariant solutions to the critical Schrödinger map problem. Invent. Math. 193(2), 249–365 (2013). arXiv:1106.0912Google Scholar
  16. 16.
    Nahmod A., Stefanov A., Uhlenbeck K.: On Schrödinger maps. CPAM 56, 114–151 (2003)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Raphal P., Rodnianksi I.: Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang Mills problems. Publ. Math. Inst. Hautes Etudes Sci. 115(1), 1–122 (2012)CrossRefGoogle Scholar
  18. 18.
    Sulem P.L., Sulem C., Bardos C.: On the continuous limit for a system of continuous spins. Commun. Math. Phys. 107(3), 431–454 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(4), 558–581 (1985)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.LAMA, UMR CNRS 8050Université Paris-Est CréteilCréteil CedexFrance

Personalised recommendations