Anderson’s Orthogonality Catastrophe

Abstract

We give an upper bound on the modulus of the ground-state overlap of two non-interacting fermionic quantum systems with N particles in a large but finite volume L d of d-dimensional Euclidean space. The underlying one-particle Hamiltonians of the two systems are standard Schrödinger operators that differ by a non-negative compactly supported scalar potential. In the thermodynamic limit, the bound exhibits an asymptotic power-law decay in the system size L, showing that the ground-state overlap vanishes for macroscopic systems. The decay exponent can be interpreted in terms of the total scattering cross section averaged over all incident directions. The result confirms and generalises P. W. Anderson’s informal computation (Phys. Rev. Lett. 18:1049–1051, 1967).

This is a preview of subscription content, access via your institution.

References

  1. And67a

    Anderson P.W.: Infrared catastrophe in Fermi gases with local scattering potentials. Phys. Rev. Lett. 18, 1049–1051 (1967)

    ADS  Article  Google Scholar 

  2. And67b

    Anderson P.W.: Ground state of a magnetic impurity in a metal. Phys. Rev. 164, 352–359 (1967)

    ADS  Article  Google Scholar 

  3. Bau01

    Bauer H.: Measure and integration theory. de Gruyter, Berlin (2001)

    Book  MATH  Google Scholar 

  4. BC03

    Basor E.L., Chen Y.: The X-ray problem revisited. J. Phys. A 36, L175–L180 (2003)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  5. BÈ67

    Birman, M.Š., Èntina, S.B.: The stationary method in the abstract theory of scattering. Math. USSR Izv. 1, 391–420 (1967) [Russian original: Izv. Akad. Nauk SSSR Ser. Mat. 31, 401–430 (1967)]

  6. BHL00

    Broderix K., Hundertmark D., Leschke H.: Continuity properties of Schrödinger semigroups with magnetic fields. Rev. Math. Phys. 12, 181–225 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Els05

    Elstrodt J.: Maß- und Integrationstheorie. Springer, Berlin (2005)

    MATH  Google Scholar 

  8. FLLS11

    Frank R.L., Lewin M., Lieb E.H., Seiringer R.: Energy cost to make a hole in the Fermi sea. Phys. Rev. Lett. 106, 150402 (2011)

    ADS  Article  Google Scholar 

  9. GK03

    Germinet F., Klein A.: Operator kernel estimates for functions of generalized Schrödinger operators. Proc. Amer. Math. Soc. 131, 911–920 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ham71

    Hamann D.R.: Orthogonality catastrophe in metals. Phys. Rev. Lett. 26, 1030–1032 (1971)

    ADS  Article  MathSciNet  Google Scholar 

  11. HG07

    Hentschel M., Guinea F.: Orthogonality catastrophe and Kondo effect in graphene. Phys. Rev. B 76, 115407 (2007)

    ADS  Article  Google Scholar 

  12. HK12a

    Heyl M., Kehrein S.: Crooks relation in optical spectra: Universality in work distributions for weak local quenches. Phys. Rev. Lett. 108, 190601 (2012)

    ADS  Article  Google Scholar 

  13. HK12b

    Heyl M., Kehrein S.: X-ray edge singularity in optical spectra of quantum dots. Phys. Rev. B 85, 155413 (2012)

    ADS  Article  Google Scholar 

  14. HM10

    Hislop P.D., Müller P.: The spectral shift function for compactly supported perturbations of Schrödinger operators on large bounded domains. Proc. Amer. Math. Soc. 138, 2141–2150 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. HS00

    Hunziker W., Sigal I.M.: The quantum N-body problem. J. Math. Phys. 41, 3448–3510 (2000)

    ADS  Article  MATH  MathSciNet  Google Scholar 

  16. HSBvD05

    Helmes R.W., Sindel M., Borda L., von Delft J.: Absorption and emission in quantum dots: Fermi surface effects of Anderson excitons. Phys. Rev. B 72, 125301 (2005)

    ADS  Article  Google Scholar 

  17. HUB05

    Hentschel M., Ullmo D., Baranger H.U.: Fermi edge singularities in the mesoscopic regime: Anderson orthogonality catastrophe. Phys. Rev. B 72, 035310 (2005)

    ADS  Article  Google Scholar 

  18. Kir87

    Kirsch W.: Small perturbations and the eigenvalues of the Laplacian on large bounded domains. Proc. Amer. Math. Soc. 101, 509–512 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. KOS

    Küttler, H., Otte, P., Spitzer, W.: Anderson’s orthogonality catastrophe for one-dimensional systems, e-print arXiv:1301.4923, Ann. Henri Poincaré. doi:10.1007/s00023-013-0287-z

  20. KY78

    Kaga H., Yosida K.: Orthogonality catastrophe due to local electron correlation. Prog. Theor. Phys. 59, 34–39 (1978)

    ADS  Article  Google Scholar 

  21. NdD69

    Nozières P., de Dominicis C.T.: Singularities in the X-ray absorption and emission of metals. iii. one-body theory exact solution. Phys. Rev. 178, 1097–1107 (1969)

    ADS  Article  Google Scholar 

  22. OT90

    Ohtaka K., Tanabe Y.: Theory of the soft-X-ray edge problem in simple metals: historical survey and recent developments. Rev. Mod. Phys. 62, 929–991 (1990)

    ADS  Article  Google Scholar 

  23. Ott05

    Otte P.: An adiabatic theorem for section determinants of spectral projections. Math. Nachr. 278, 470–484 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. RH10

    Röder G., Hentschel M.: Orthogonality catastrophe in ballistic quantum dots: Role of level degeneracies and confinement geometry. Phys. Rev. B 82, 125312 (2010)

    ADS  Article  Google Scholar 

  25. RS71

    Rivier N., Simanek E.: Exact calculation of the orthogonality catastrophe in metals. Phys. Rev. Lett. 26, 435–438 (1971)

    ADS  Article  Google Scholar 

  26. RS79

    Reed M., Simon B.: Methods of modern mathematical physics III. Academic Press, New York (1979)

    MATH  Google Scholar 

  27. Sim82

    Simon B.: Schrödinger semigroups. Bull. Amer. Math. Soc. (N.S.) 7 447–526 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Sim05

    Simon, B.: Trace ideals and their applications, Mathematical Surveys and Monographs, vol. 120, 2nd ed. American Mathematical Society, Providence (2005)

  29. Ste93

    Stein E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43. Princeton University Press, Princeton (1993)

    Google Scholar 

  30. Sto01

    Stollmann P.: Caught by disorder: bound states in random media, Progress in Mathematical Physics, vol. 20. Birkhäuser, Boston (2001)

    Book  Google Scholar 

  31. THC+11

    Türeci, H.E., Hanl, M., Claassen, M., Weichselbaum, A., Hecht, T., Braunecker, B., Govorov, A., Glazman, L., Imamoglu, A., von Delft, J.: Many-body dynamics of exciton creation in a quantum dot by optical absorption: A quantum quench towards Kondo correlations. Phys. Rev. Lett. 106, 107402 (2011)

    Google Scholar 

  32. Wei80

    Weidmann, J.: Linear operators in Hilbert spaces, Graduate Texts in Mathematics, vol. 68, Springer, New York (1980)

  33. Yaf00

    Yafaev D.: Scattering theory: some old and new problems, Lecture Notes in Mathematics, vol. 1735. Springer, Berlin (2000)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Müller.

Additional information

Work supported by Sfb/Tr 12 of the German Research Council (Dfg).

Communicated by B. Simon

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gebert, M., Küttler, H. & Müller, P. Anderson’s Orthogonality Catastrophe. Commun. Math. Phys. 329, 979–998 (2014). https://doi.org/10.1007/s00220-014-1914-3

Download citation

Keywords

  • Thermodynamic Limit
  • Trace Class
  • Lebesgue Point
  • Spectral Shift Function
  • Lebesgue Density