Communications in Mathematical Physics

, Volume 330, Issue 3, pp 1155–1178 | Cite as

Stability of Asymptotics of Christoffel–Darboux Kernels

  • Jonathan BreuerEmail author
  • Yoram Last
  • Barry Simon


We study the stability of convergence of the Christoffel–Darboux kernel, associated with a compactly supported measure, to the sine kernel, under perturbations of the Jacobi coefficients of the measure. We prove stability under variations of the boundary conditions and stability in a weak sense under 1 and random 2 diagonal perturbations. We also show that convergence to the sine kernel at x implies that μ({x}) = 0.


Orthogonal Polynomial Continuous Spectrum Jacobi Matrice Random Matrix Theory Orthogonality Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agmon S.: Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. II. 2, 151–218 (1975)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Avila A., Last Y., Simon B.: Bulk universality and clock spacing of zeros for ergodic Jacobi matrices with a.c. spectrum. Anal. PDE 3, 81–108 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Birman M.: Conditions for the existence of wave operators. Dokl. Akad. Nauk SSSR 143, 506–509 (1962)MathSciNetGoogle Scholar
  4. 4.
    Breuer J.: Sine kernel asymptotics for a class of singular measures. J. Approx. Theory 163, 1478–1491 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Breuer J., Last Y.: Stability of spectral types for Jacobi matrices under decaying random perturbations. J. Funct. Anal. 245, 249–283 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Breuer J., Strahov E.: A universality theorem for ratios of random characteristic polynomials. J. Approx. Theory 164, 803–814 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Christ M., Kiselev A.: Absolutely continuous spectrum for one-dimensional Schrödinger operators with slowly decaying potentials: Some optimal results. J. Amer. Math. Soc. 11, 771–797 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Deift, P.: Orthogonal polynomials and random matrices: a riemann-hilbert approach. In: Courant Institute Lecture Notes, Vol. 3 New York: New York University Press, 1999Google Scholar
  9. 9.
    Deift P., Killip R.: On the absolutely continuous spectrum of one-dimensional Schrödinger operators with square summable potentials. Commun. Math. Phys. 203, 341–347 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Denisov S.A.: On a conjecture by Y. Last. J. Approx. Theory 158, 194–213 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dombrowski J.: Quasitriangular matrices. Proc. Amer. Math. Soc. 69, 95–96 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Enss V.: Asymptotic completeness for quantum mechanical potential scattering. Commun. Math. Phys. 61, 258–291 (1978)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Findley E.: Universality for regular measures satisfying Szegő’s condition. J. Approx. Theory 155, 136–154 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Freud G.: Orthogonal Polynomials. Pergamon Press, Oxford-New York (1971)Google Scholar
  15. 15.
    Gesztesy F., Simon B.: Rank one perturbations at infinite coupling. J. Funct. Anal. 128, 245–252 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kaluzhny U., Shamis M.: Preservation of absolutely continuous spectrum of periodic Jacobi operators under perturbations of square-summable variation. Constr. Approx. 35, 89–105 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Kato T.: Perturbation of continuous spectra by trace class operators. Proc. Japan Acad. 33, 260–264 (1957)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Kato T.: Wave operators and similarity for some non-self-adjoint operators. Math. Ann. 162, 258–279 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Killip R., Simon B.: Sum rules for Jacobi matrices and their applications to spectral theory. Ann. Math. 158, 253–321 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Kiselev A., Last Y., Simon B.: Stability of singular spectral types under decaying perturbations. J. Funct. Anal. 198, 1–27 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kuijlaars, A.B.J.: Universality. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook on Random Matrix theory. Oxford: Oxford University Press, 2011Google Scholar
  22. 22.
    Kuroda S.: Perturbations of continuous spectra by unbounded operators, I. J. Math. Soc. Japan 11, 247–262 (1959)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Kuroda S.: Perturbations of continuous spectra by unbounded operators, II. J. Math. Soc. Japan 12, 243–257 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Last Y.: Destruction of absolutely continuous spectrum by perturbation potentials of bounded variation. Commun. Math. Phys. 274, 243–252 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Last Y., Simon B.: Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrdinger operators. Invent. Math. 135, 329–367 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Last Y., Simon B.: Fine structure of the zeros of orthogonal polynomials, IV. A priori bounds and clock behavior. Commun. Pure Appl. Math. 61, 486–538 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Levin E., Lubinsky D.: Applications of universality limits to zeros and reproducing kernels of orthogonal polynomials. J. Approx. Theory 150, 69–95 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Levin E., Lubinsky D.: Universality Limits in the bulk for varying measures. Adv. Math. 219, 743–779 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Lubinsky D.S.: A new approach to universality involving orthogonal polynomials. Annals Math. 170, 915–939 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Lubinsky D.: Universality limits in the bulk for arbitrary measures on a compact set. J. Anal. Math. 106, 373–394 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Lubinsky D.S.: Some recent methods for establishing universality limits. J. Nonlinear Anal. 71, e2750–e2765 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Pearson D.B.: A generalization of Birman’s trace theorem. J. Funct. Anal. 28, 82–186 (1978)CrossRefGoogle Scholar
  33. 33.
    Rudin W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)zbMATHGoogle Scholar
  34. 34.
    Simon, B.: Spectral analysis of rank one perturbations and applications. In: Feldman, J., Froese, R., Rosen, L. (eds). Proc. Mathematical Quantum Theory, II: Schrdinger Operators. CRM Proc. Lecture Notes, Vol. 8, 1995, pp. 109–149Google Scholar
  35. 35.
    Simon B.: Two extensions of Lubinsky’s universality theorem. J. Anal. Math. 105, 345–362 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Simon B.: Weak convergence of CD kernels and applications. Duke Math. J. 146, 305–330 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Simon, B.: The Christoffel–Darboux kernel. In: Perspectives in PDE, Harmonic Analysis and Applications. Proc. Sympos. Pure Math. Vol. 79, Providence, RI: American Mathematical Society, 2008, pp 295–335Google Scholar
  38. 38.
    Simon, B.: Szegő’s Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials. M. B. Porter Lectures, Princeton, NJ: Princeton University Press, 2011Google Scholar
  39. 39.
    Szegő, G.: Orthogonal Polynomials, 3rd edn. In: American Mathematical Society Colloquium Publications, Vol. 23, Providence, RI: American Mathematical Society, 1939, 1967Google Scholar
  40. 40.
    Totik V.: Universality and fine zero spacing on general sets. Arkiv för Matematik 47, 361–391 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of MathematicsThe Hebrew UniversityJerusalemIsrael
  2. 2.Mathematics 253-37California Institute of TechnologyPasadenaUSA

Personalised recommendations