Skip to main content
Log in

Self-Dual Noncommutative \({\phi^4}\) -Theory in Four Dimensions is a Non-Perturbatively Solvable and Non-Trivial Quantum Field Theory

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study quartic matrix models with partition function \({\mathcal{Z}[E, J] = \int dM}\) exp(trace\({(JM - EM^{2} - \frac{\lambda}{4} M^4)}\)). The integral is over the space of Hermitean \({\mathcal{N} \times \mathcal{N}}\) -matrices, the external matrix E encodes the dynamics, \({\lambda > 0}\) is a scalar coupling constant and the matrix J is used to generate correlation functions. For E not a multiple of the identity matrix, we prove a universal algebraic recursion formula which gives all higher correlation functions in terms of the 2-point function and the distinct eigenvalues of E. The 2-point function itself satisfies a closed non-linear equation which must be solved case by case for given E. These results imply that if the 2-point function of a quartic matrix model is renormalisable by mass and wavefunction renormalisation, then the entire model is renormalisable and has vanishing β-function.

As the main application we prove that Euclidean \({\phi^4}\) -quantum field theory on four-dimensional Moyal space with harmonic propagation, taken at its self-duality point and in the infinite volume limit, is exactly solvable and non-trivial. This model is a quartic matrix model, where E has for \({\mathcal{N} \to \infty}\) the same spectrum as the Laplace operator in four dimensions. Using the theory of singular integral equations of Carleman type we compute (for \({\mathcal{N} \to \infty}\) and after renormalisation of \({E, \lambda}\)) the free energy density (1/volume) log\({(\mathcal{Z}[E, J]/\mathcal{Z}[E, 0])}\) exactly in terms of the solution of a non-linear integral equation. Existence of a solution is proved via the Schauder fixed point theorem.

The derivation of the non-linear integral equation relies on an assumption which in subsequent work is verified for coupling constants \({\lambda \leq 0}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdesselam, A., Rivasseau, V.: Trees, forests and jungles: a botanical garden for cluster expansions. In: Constructive physics. Lect. Notes Phys., Vol. 446, Berlin: Springer, 1994, pp. 7–36. [hep-th/9409094]

  2. Aizenman M.: Proof of the triviality of \({{\phi^4_d}}\) field theory and some mean field features of Ising models for \({d > 4}\) . Phys. Rev. Lett. 47, 1–4 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  3. Avramescu C.: Sur l’existence des solutions convergentes des systèmes d’équations différentielles non linéaires. Ann. Mat. Pura Appl. 81, 147–168 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  4. Banks, T., Fischler, W., Shenker, S.H., Susskind, L.: M theory as a matrix model: a conjecture. Phys. Rev. D 55, 5112–5128 (1997). [hep-th/9610043]

    Google Scholar 

  5. Baxter R.J.: Eight-vertex model in lattice statistics. Phys. Rev. Lett. 26, 832–833 (1971)

    Article  ADS  Google Scholar 

  6. Baxter R.J.: Hard hexagons: exact solution. J. Phys. A Math. Gen. 13, L61–L70 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  7. Becchi, C., Giusto, S., Imbimbo, C.: The Wilson–Polchinski renormalization group equation in the planar limit. Nucl. Phys. B 633, 250–270 (2002). [hep-th/0202155]

    Google Scholar 

  8. Becchi, C., Giusto, S., Imbimbo, C.: The renormalization of noncommutative field theories in the limit of large noncommutativity. Nucl. Phys. B 664, 371–399 (2003). [hep-th/0304159]

    Google Scholar 

  9. Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Bethe H.: Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette. Z. Phys. 71, 205–226 (1931)

    Article  ADS  Google Scholar 

  11. Brezin E., Kazakov V.A.: Exactly solvable field theories of closed strings. Phys. Lett. B 236, 144–150 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. Brunetti, R., Fredenhagen, K.: Quantum field theory on curved backgrounds. Lect. Notes Phys. 786, 129–155 (2009). [arXiv:0901.2063 [gr-qc]]

  13. Brydges D.C., Kennedy T.: Mayer expansions and the Hamilton–Jacobi equation. J. Stat. Phys. 48, 19–49 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. Carleman T.: Sur la résolution de certaines équations intégrales. Arkiv Mat. Astron. och Fysik 16, 19 (1922)

    Google Scholar 

  15. Chamseddine, A.H., Connes, A.: The spectral action principle. Commun. Math. Phys. 186, 731–750 (1997). [hep-th/9606001]

    Google Scholar 

  16. Cianciaruso, F., Colao, V., Marino, G., Xu, H.-K.: A compactness result for differentiable functions with an application to boundary value problems. Ann. Mat. Pura Appl. (2011). doi:10.1007/s10231-011-0230-1

  17. Connes A.: Noncommutative geometry. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  18. Connes, A.: Gravity coupled with matter and foundation of noncommutative geometry. Commun. Math. Phys. 182, 155–176 (1996). [hep-th/9603053]

    Google Scholar 

  19. Connes, A.: On the spectral characterization of manifolds. J. Noncommut. Geom. 7, 1–82 (2013). [arXiv:0810.2088 [math.OA]]

    Google Scholar 

  20. Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: 2D gravity and random matrices. Phys. Rept. 254, 1–133 (1995). [hep-th/9306153]

  21. Disertori, M., Rivasseau, V.: Two and three loops beta function of non commutative \({{\phi^4_4}}\) theory. Eur. Phys. J. C 50, 661–671 (2007). [hep-th/0610224]

    Google Scholar 

  22. Disertori, M., Gurau, R., Magnen, J., Rivasseau, V.: Vanishing of beta function of non commutative \({{\phi^4_4}}\) theory to all orders, Phys. Lett. B 649, 95–102 (2007). [hep-th/0612251]

    Google Scholar 

  23. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The Quantum structure of space–time at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995). [hep-th/0303037]

    Google Scholar 

  24. Douglas M.R., Shenker S.H.: Strings in less than one dimension. Nucl. Phys. B 335, 635–654 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  25. Faddeev L.D.: Instructive history of the quantum inverse scattering method. Acta Appl. Math. 39, 69–84 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  26. Feldman J., Magnen J., Rivasseau V., Seneor R.: Massive Gross–Neveu model: a rigorous perturbative construction. Phys. Rev. Lett. 54, 1479–1481 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  27. Feldman J.S., Osterwalder K.: The Wightman axioms and the mass gap for weakly coupled \({{\phi^4_3}}\) quantum field theories. Ann. Phys. 97, 80–135 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  28. Filk T.: Divergencies in a field theory on quantum space. Phys. Lett. B 376, 53–58 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Friedan D., Qiu Z.-a., Shenker S.H.: Conformal invariance, unitarity and two-dimensional critical exponents. Phys. Rev. Lett. 52, 1575–1578 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  30. Fröhlich J.: On the triviality of \({{\lambda \phi^4_d}}\) theories and the approach to the critical point in \({{d \geq 4}}\) dimensions. Nucl. Phys. B 200, 281–296 (1982)

    Article  ADS  Google Scholar 

  31. Gawedzki K., Kupiainen A.: Gross–Neveu model through convergent perturbation expansions. Commun. Math. Phys. 102, 1–30 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  32. Gayral, V., Gracia-Bondía, J.M., Iochum, B., Schücker, T., Várilly, J.C.: Moyal planes are spectral triples. Commun. Math. Phys. 246, 569–623 (2004). [hep-th/0307241]

    Google Scholar 

  33. Gayral, V., Wulkenhaar, R.: Spectral geometry of the Moyal plane with harmonic propagation. J. Noncommut. Geom. 7, 939–979 (2013). [arXiv:1108.2184 [math.OA

    Google Scholar 

  34. Ginibre J.: General formulation of Griffiths’ inequalities. Commun. Math. Phys. 16, 310–328 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  35. Glimm, J., Jaffe, A.M.: The \({{\lambda \phi^4_2}}\) quantum field theory without cut-offs, I. Phys. Rev. 176, 1945–1951 (1968)

  36. Glimm, J., Jaffe, A.M.: The \({{\lambda \phi^4_2}}\) quantum field theory without cut-offs. II. The field operators and the approximate vacuum. Ann. Math. 91, 362–401 (1970)

  37. Glimm, J., Jaffe, A.M.: The \({{\lambda \phi^4_2}}\) quantum field theory without cut-offs, III. The physical vacuum. Acta Math. 125, 203–267 (1970)

  38. Glimm, J., Jaffe, A.M.: The \({{\lambda \phi^4_2}}\) quantum field theory without cut-offs, IV. Perturbations of the Hamiltonian. J. Math. Phys. 13, 1568–1584 (1972)

  39. Glimm J., Jaffe A.M.: Positivity of the \({{\phi^4_3}}\) Hamiltonian. Fortsch. Phys. 21, 327–376 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  40. Glimm J., Jaffe A.M., Spencer T.: The Wightman axioms and particle structure in the \({{{P(\phi)_2}}}\) quantum field model. Ann. Math. 100, 585–632 (1974)

    Article  MathSciNet  Google Scholar 

  41. Glimm J., Jaffe A.M.: Quantum physics. A functional integral point of view. Springer, New York (1987)

    Google Scholar 

  42. Gracia-Bondía, J.M., Várilly, J.C.: Algebras of distributions suitable for phase space quantum mechanics. I.. J. Math. Phys. 29, 869–879 (1988)

    Google Scholar 

  43. Gracia-Bondía, J.M., Várilly, J.C.: Algebras of distributions suitable for phase space quantum mechanics. II. Topologies on the Moyal algebra. J. Math. Phys. 29, 880–887 (1988)

    Google Scholar 

  44. Gradshteyn I.S., Ryzhik I.M.: Table of integrals, series, and products. Academic Press, Boston, MA (1994)

    MATH  Google Scholar 

  45. Gross D.J., Migdal A.A.: Nonperturbative two-dimensional quantum gravity. Phys. Rev. Lett. 64, 127–130 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Gross D.J., Neveu A.: Dynamical symmetry breaking in asymptotically free field theories. Phys. Rev. D 10, 3235–3253 (1974)

    Article  ADS  Google Scholar 

  47. Gross D.J., Wilczek F.: Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)

    Article  ADS  Google Scholar 

  48. Grosse, H., Steinacker, H.: Renormalization of the noncommutative \({{\phi^3}}\) -model through the Kontsevich model. Nucl. Phys. B 746, 202–226 (2006). [hep-th/0512203]

  49. Grosse, H., Steinacker, H.: Exact renormalization of a noncommutative \({{\phi^3}}\) model in 6 dimensions. Adv. Theor. Math. Phys. 12, 605–639 (2008). [hep-th/0607235]

    Google Scholar 

  50. Grosse, H., Wulkenhaar, R.: The β-function in duality-covariant noncommutative \({{\phi^4}}\) -theory. Eur. Phys. J. C 35, 277–282 (2004). [hep-th/0402093]

    Google Scholar 

  51. Grosse, H., Wulkenhaar, R.: Power-counting theorem for non-local matrix models and renormalisation. Commun. Math. Phys. 254, 91–127 (2005). [hep-th/0305066]

    Google Scholar 

  52. Grosse, H., Wulkenhaar, R.: Renormalisation of \({{\phi^4}}\) -theory on noncommutative \({{\mathbb{R}^4}}\) in the matrix base. Commun. Math. Phys. 256, 305–374 (2005). [hep-th/0401128]

  53. Grosse, H., Wulkenhaar, R.: Renormalization of \({{\phi^4}}\) -theory on noncommutative \({{\mathbb{R}^4}}\) to all orders. Lett. Math. Phys. 71, 13–26 (2005). [hep-th/0403232]

  54. Grosse, H., Wulkenhaar, R.: Progress in solving a noncommutative quantum field theory in four dimensions. arXiv:0909.1389. [hep-th]

  55. Grosse, H., Wulkenhaar, R.: 8D-spectral triple on 4D-Moyal space and the vacuum of noncommutative gauge theory. J. Geom. Phys. 62, 1583–1599 (2012). [arXiv:0709.0095 [hep-th]]

    Google Scholar 

  56. Grosse, H., Wulkenhaar, R.: Solvable limits of a 4D noncommutative QFT. arXiv:1306.2816 [math-ph]

  57. Grosse, H., Wulkenhaar, R.: Construction of the \({{\phi^4_4}}\) -quantum field theory on noncommutative Moyal space (2014). arXiv:1402.1041 [math-ph]

  58. Guerra, F., Rosen, L., Simon, B.: The \({{P(\phi)_2}}\) Euclidean quantum field theory as classical statistical mechanics. Ann. Math. 101, 111–189 (1975) and Ann. of Math. 101, 191–259 (1975)

  59. Gurau, R., Magnen, J., Rivasseau, V., Vignes-Tourneret, F.: Renormalization of non-commutative \({{\phi^4_4}}\) field theory in x space. Commun. Math. Phys. 267, 515–542 (2006). [hep-th/0512271]

    Google Scholar 

  60. Haag R.: Local quantum physics: fields, particles, algebras. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  61. Haag R., Kastler D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. Hagen C.R.: The Thirring model. Nuovo Cim. B 51, 169–186 (1967)

    Article  ADS  Google Scholar 

  63. Ishibashi, N., Kawai, H., Kitazawa, Y., Tsuchiya, A.: A large-N reduced model as superstring. Nucl. Phys. B 498, 467–491 (1997). [hep-th/9612115]

    Google Scholar 

  64. Ising E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925)

    Article  ADS  Google Scholar 

  65. Jaffe, A.M.: Constructive quantum field theory. In: Fokas, A. et al. (eds.) Mathematical Physics 2000. London: Imperial College Press, 2000, pp. 111–127

  66. Jaffe, A.M., Witten, E.: Quantum Yang–Mills theory. In: Carlson, J., et al. (eds.) The millenium prize problems. Providence, Amer. Math. Soc., 2006, pp. 129–152

  67. Jimbo, M. (ed.): Yang–Baxter equation in integrable systems, Singapore: World Scientific, 1990

  68. Johnson K.: Solution of the equations for the Green’s functions of a two-dimensional relativistic field theory. Nuovo Cim. 20, 773–790 (1961)

    Article  Google Scholar 

  69. Kac M.: On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65, 1–13 (1949)

    Article  MATH  Google Scholar 

  70. Klaiber, B.: The Thirring model. In: Boulder 1967 lectures in theoretical physics, Vol. Xa. Quantum theory and statistical physics, New York, 1968, pp. 141–176

  71. Kontsevich M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147, 1–23 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  72. Korepin, V.E.: Direct calculation of the S-matrix in the massive Thirring model. Theor. Math. Phys. 41, 953–967 (1979) [Teor. Mat. Fiz. 41 (1979) 169–189]

  73. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. I+II, Phys. Rev. 60, 252–262, 263–276 (1941)

  74. Landau, L.D., Abrikosov, A.A., Khalatnikov, I.M.: On the removal of infinities in quantum electrodynamics. (in russ.) Dokl. Akad. Nauk SSSR 95, 497–500 (1954)

    Google Scholar 

  75. Landau, L.D., Abrikosov, A.A., Khalatnikov, I.M.: Asymptotic expression of the electron Green function in quantum electrodynamics. (in russ.) Dokl. Akad. Nauk SSSR 95, 773–776 (1954)

  76. Landau, L.D., Abrikosov, A.A., Khalatnikov, I.M.: An asymptotic expression for the photon Green function in quantum electrodynamics. (in russ.) Dokl. Akad. Nauk SSSR 95, 1117–1120 (1954)

  77. Langmann, E., Szabo, R.J.: Duality in scalar field theory on noncommutative phase spaces. Phys. Lett. B 533, 168–177 (2002). [hep-th/0202039]

    Google Scholar 

  78. Langmann, E., Szabo, R.J., Zarembo, K.: Exact solution of quantum field theory on noncommutative phase spaces. JHEP 0401, 017 (2004). [hep-th/0308043]

    Google Scholar 

  79. Lieb E.H.: Residual entropy of square ice. Phys. Rev. 162, 162–172 (1967)

    Article  ADS  Google Scholar 

  80. Magnen, J., Rivasseau, V.: Constructive \({{\phi^4}}\) field theory without tears. Ann. Henri Poincaré 9, 403–424 (2008) [arXiv:0706.2457 [math-ph]]

  81. Minwalla, S., Van Raamsdonk, M., Seiberg, N.: Noncommutative perturbative dynamics. JHEP 0002, 020 (2000). [hep-th/9912072]

  82. Muskhelishvili N.I.: Singuläre Integralgleichungen. Akademie-Verlag, Berlin (1965)

    Google Scholar 

  83. Nelson, E.: Quantum fields and Markoff fields. In: Spencer, D.C. (ed.) Partial differential equations. Providence: Amer. Math. Soc., 1973, pp. 413–420

  84. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  85. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions II. Commun. Math. Phys. 42, 281–305 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  86. Onsager L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  87. Politzer, H.D.: Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)

    Google Scholar 

  88. Rieffel, M.A.: Deformation quantization for actions of \({{\mathbb{R}^d}}\) . Memoirs AMS 506, 1–96 (1993)

    Google Scholar 

  89. Rivasseau V.: Construction and Borel summability of planar four-dimensional Euclidean field theory. Commun. Math. Phys. 95, 445–486 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  90. Rivasseau V.: From perturbative to constructive renormalization. Princeton University Press, Princeton (1991)

    Google Scholar 

  91. Rivasseau, V., Vignes-Tourneret, F., Wulkenhaar, R.: Renormalisation of noncommutative \({{\phi^4}}\) -theory by multi-scale analysis. Commun. Math. Phys. 262, 565–594 (2006). [hep-th/0501036]

  92. Rivasseau, V.: Non-commutative renormalization. In: Duplantier, B., Rivasseau, V. (eds.) Quantum spaces (Séminaire Poincaré X). Basel: Birkhäuser Verlag, 2007, pp 19–109. [arXiv:0705.0705 [hep-th]]

  93. Rivasseau, V.: Constructive matrix theory. JHEP 0709, 008 (2007). [arXiv:0706.1224 [hep-th]]

  94. Rivasseau, V., Wang, Z.: Constructive renormalization for \({{\Phi^{4}_2}}\) theory with loop vertex expansion. J. Math. Phys. 53, 042302 (2012) [arXiv:1104.3443 [math-ph]]

  95. Schwinger J.: Euclidean quantum electrodynamics. Phys. Rev. 115, 721–731 (1959)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  96. Schwinger J.S.: Gauge invariance and mass. II. Phys. Rev. 128, 2425–2429 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  97. Streater R.F., Wightman A.S.: PCT, spin and statistics, and all that. Benjamin, New York (1964)

    MATH  Google Scholar 

  98. Symanzik, K.: A modified model of Euclidean quantum field theory. Courant Institute of Mathematical Sciences, New York University, Report IMM-NYU 327 (1964)

  99. Thirring W.E.: A soluble relativistic field theory?. Ann. Phys. 3, 91–112 (1958)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  100. Hooft G.’t.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461–473 (1974)

    Article  ADS  Google Scholar 

  101. Hooft G.’t.: Rigorous construction of planar diagram field theories in four-dimensional Euclidean space. Commun. Math. Phys. 88, 1–25 (1983)

    Article  ADS  Google Scholar 

  102. Tricomi F.G.: Integral equations. Interscience, New York (1957)

    MATH  Google Scholar 

  103. Wang, Z.: Constructive renormalization of 2-dimensional Grosse–Wulkenhaar model. [arXiv:1205.0196 [hep-th]]

  104. Wess J., Zumino B.: Consequences of anomalous Ward identities. Phys. Lett. B 37, 95–97 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  105. Wightman A.S.: Quantum field theory in terms of vacuum expectation values. Phys. Rev. 101, 860–866 (1956)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  106. Wightman A.S., Gårding L.: Fields as operator-valued distributions in quantum field theory. Ark. Fys. 28, 129–184 (1964)

    Google Scholar 

  107. Wilson K.G., Kogut J.B.: The renormalization group and the \({{\epsilon}}\) -expansion. Phys. Rept. 12, 75–200 (1974)

    Article  ADS  Google Scholar 

  108. Witten E.: Nonabelian bosonization in two dimensions. Commun. Math. Phys. 92, 455–472 (1984)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  109. Witten E.: Two-dimensional gravity and intersection theory on moduli space. Surveys Diff. Geom. 1, 243–310 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raimar Wulkenhaar.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosse, H., Wulkenhaar, R. Self-Dual Noncommutative \({\phi^4}\) -Theory in Four Dimensions is a Non-Perturbatively Solvable and Non-Trivial Quantum Field Theory. Commun. Math. Phys. 329, 1069–1130 (2014). https://doi.org/10.1007/s00220-014-1906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-014-1906-3

Keywords

Navigation