Communications in Mathematical Physics

, Volume 327, Issue 1, pp 1–47 | Cite as

Determinantal Point Processes and Fermions on Complex Manifolds: Large Deviations and Bosonization

  • Robert J. BermanEmail author


We study determinantal random point processes on a compact complex manifold X associated to a Hermitian metric on a line bundle over X and a probability measure on X. Physically, this setup describes a gas of free fermions on X subject to a U(1)-gauge field and when X is the Riemann sphere it specializes to various random matrix ensembles. Our general setup will also include the setting of weighted orthogonal polynomials in \({\mathbb{C}^{n}}\), as well as in \({\mathbb{R}^{n}}\). It is shown that, in the many particle limit, the empirical random measures on X converge exponentially towards the deterministic pluripotential equilibrium measure, defined in terms of the Monge–Ampère operator of complex pluripotential theory. More precisely, a large deviation principle (LDP) is established with a good rate functional which coincides with the (normalized) pluricomplex energy of a measure recently introduced in Berman et al. (Publ Math de l’IHÉS 117, 179–245, 2013). We also express the LDP in terms of the Ray–Singer analytic torsion. This can be seen as an effective bosonization formula, generalizing the previously known formula in the Riemann surface case to higher dimensions and the paper is concluded with a heuristic quantum field theory interpretation of the resulting effective boson–fermion correspondence.


Line Bundle Complex Manifold Curvature Form Large Deviation Principle Bergman Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez-Gaumé, L., Bost, J.-B., Moore, G., Nelson, P., Vafa, C.: Bosonization on higher genus Riemann surfaces. Commun. Math. Phys. 112(3), 503–552 (1987)Google Scholar
  2. 2.
    Bedford E., Taylor A.: The Dirichlet problem for a complex Monge–Ampere equation. Invent. Math. 37(1), 1–44 (1976)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Ben Arous G., Guinnet A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108(4), 517–542 (1997)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ben Arous G., Zeitouni O.: Large deviations from the circular law. ESAIM Probab. Stat. 2, 123–134 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Corrected Reprint of the 1992 Original. Grundlehren Text Editions. Berlin: Springer-Verlag, 2004Google Scholar
  6. 6.
    Berman R.J.: Bergman kernels and local holomorphic Morse inequalities. Math. Z. 248(2), 325–344 (2004)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Berman, R.J.: Bergman kernels and equilibrium measures for line bundles over projective manifolds. Am. J. Math. 131(5), 35 (2009)Google Scholar
  8. 8.
    Berman, R.J.: Bergman kernels for weighted polynomials and weighted equilibrium measures of Cn. Indiana Univ. Math. J. 58(4), 19 (2009)Google Scholar
  9. 9.
    Berman, R.J.: Determinantal point processes and fermions on complex manifolds: bulk universality. Preprint at ArXiv:0811.3341 (2008)
  10. 10.
    Berman, R.J.: Large deviations and entropy for determinantal point processes on complex manifold (this is version 1 of the preprint 2008 at ArXiv:0812.4224)
  11. 11.
    Berman, R.J.: The Quillen metric, analytic torsion and tunneling for high powers of a holomorphic line bundle. ArXiv:1106.2965 (2011)
  12. 12.
    Berman, R.J.: Kahler–Einstein metrics emerging from free fermions and statistical mechanics. J. High Energy Phys. (JHEP) 2011(10), 22 (2011)Google Scholar
  13. 13.
    Berman R.J., Boucksom S.: Growth of balls of holomorphic sections and energy at equilibrium. Invent. Math. 181(2), 337 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Berman R.J., Boucksom S., Witt Nyström D.: Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207(1), 1–27 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Berman, R.J., Boucksom, S., Guedj, V.: Zeriahi, A.: A variational approach to complex Monge–Ampere equations. Publ. Math. de l’IHÉS 117, 179–245 (2013)Google Scholar
  16. 16.
    Bismut, J.-M., Gillet, H., Soulé, C.: Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion. Commun. Math. Phys. 115(1), 49–78 (1988)Google Scholar
  17. 17.
    Bloom, T., Levenberg, N.: Asymptotics for Christoffel functions of planar measures. J. Anal. Math. 106, 353–371 (2008)Google Scholar
  18. 18.
    Bloom T.: Weighted polynomials and weighted pluripotential theory. Trans. Am. Math. Soc. 361, 2163–2179 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    Bloom, T.: Large Deviations for VanDerMonde Determinants. Talk Given at the Workshop on Complex Hyperbolic Geometry and Related Topics (November 17–21, 2008) at the Fields institute.
  20. 20.
    Bloom T., Levenberg N.: Transfinite diameter notions in CN and integrals of Vandermonde determinants. Ark. Mat. 48(1), 17–40 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Bloom T., Levenberg N.: Pluripotential energy. Potential Anal. 36(1), 155–176 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Boucksom S., Essidieux P., Guedj V.: Zeriahi: Monge–Ampere equations in big cohomology classes. Acta Math. 205(2), 199–262 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Burgess C.P., Lütken C.A., Quevedo F.: Bosonization in higher dimensions. Phys. Lett. B 336, 18 (1994)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    Deift, P.A.: Orthogonal polynomials and random matrices: a Riemann–Hilbert approach. Courant Lecture Notes in Mathematics, vol. 3. New York University, Courant Institute of Mathematical Sciences, New York: American Mathematical Society, Providence, 1999Google Scholar
  25. 25.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, pp. xiv+346. Jones and Bartlett Publishers. Boston, MA (1993)Google Scholar
  26. 26.
    Demailly J.P.: Regularization of closed positive currents and intersection theory. J. Algebr. Geom. 1(3), 361–409 (1992)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Demailly, J.-P.: Complex analytic and algebraic geometry.
  28. 28.
    Demailly, J.-P.: Potential theory in several complex variables.
  29. 29.
    Douglas M.R., Klevtsov S.: Bergman kernel from path integral. Commun. Math. Phys. 293(1), 205–230 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Ellis, R.: Entropy, Large Deviations, and Statistical Mechanics. New York: Springer, 2005Google Scholar
  31. 31.
    Frohlich, J., Götschmann, R., Marchetti, P.A.: Bosonization of fermi systems in arbitrary dimension in terms of gauge forms. J. Phys. A 28, 1169 (1995)Google Scholar
  32. 32.
    Gawedzki, K.: Lectures on conformal field theory., or see pp. 727–805. In: Deligne, P., Freed, D. (eds.) Classical Field Theory. Quantum Fields and Strings: A Course for Mathematicians, vol. I, 2 (Princeton, NJ, 1996/1997). Providence: American Mathematical Society, 1999
  33. 33.
    Ginibre J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. Wiley Classics Library. New York: Wiley, 1994Google Scholar
  35. 35.
    Guedj V., Zeriahi A.: Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15(4), 607–639 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Guedj V., Zeriahi A.: The weigthed Monge–Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250(2), 442–487 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Guionnet, A.: Large random matrices: lectures on macroscopic asymptotics. École d’Été de Probabilités de Saint-Flour XXXVI. Lecture Notes in Mathematics, vol. 1957. New York: Springer, 2006Google Scholar
  38. 38.
    Hedenmalm, H., Makarov, N.: Quantum Hele-Shaw flow, math.PR/0411437, Coulomb gas ensembles and Laplacian growth. Proc. Lond. Math. Soc. 106(3), 859–907 (2013)
  39. 39.
    Hough J.B., Krishnapur M., Peres Y.l., Virág B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Johansson K.: On Szegö’s asymptotic formula for Toeplitz determinants and generalizations. Bull. Sci. Math. (2) 112(3), 257–304 (1988)zbMATHMathSciNetGoogle Scholar
  41. 41.
    Johansson K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91(1), 151–204 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Johansson, K.: Random matrices and determinantal processes. arXiv:math-ph/0510038
  43. 43.
    Klimek, M.: Pluripotential theory. London Mathematical Society Monographs. New Series, 6. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press, 1991Google Scholar
  44. 44.
    Kolodziej S.: The complex Monge–Ampère equation. Acta Math. 180(1), 69–117 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Levenberg, N.: Weighted pluripotential theory results of Berman–Boucksom. arXiv:1010.4035
  46. 46.
    Macchi O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83–122 (1975)CrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    Onofri E.: On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys. 86(3), 321–326 (1982)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Ross, J., Witt Nystrom, D.: Analytic test configurations and geodesic rays. arXiv:1101.1612
  49. 49.
    Saff, E., Totik, V.: Logarithmic potentials with exteriour fields. Berlin: Springer, 1997. (with an appendix by Bloom, T)Google Scholar
  50. 50.
    Schaposnik F.A.: A comment on bosonization in d ≥  2 dimensions. Phys. Lett. B 356(1,10), 39–44 (1995)ADSCrossRefMathSciNetGoogle Scholar
  51. 51.
    Scardicchio, A., Torquato, S., Zachary, C.E.: Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory. J. Stat. Mech. Theory Exp. 11(P11019), 39 (2008)Google Scholar
  52. 52.
    Scardicchio, A., Torquato, S., Zachary, C.E.: Statistical properties of determinantal point processes in high-dimensional Euclidean spaces. Phys. Rev. E (3) 79(4), 19 (2009) (041108)Google Scholar
  53. 53.
    Sloan I.H., Womersley R.S.: How good can polynomial interpolation on the sphere be. Adv. Comput. Math. 14(3), 195–226 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    Stone, M.: Bosonization. World Scientific, Singapore (1994)Google Scholar
  55. 55.
    Soshnikov, A.: Determinantal random point fields. (Russian) Uspekhi Mat. Nauk 55, 5(335), 107–160 (2000); translation in Russian Math. Surv. 55(5), 923–975 (2000)Google Scholar
  56. 56.
    Soulé, C.: Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics, vol. 33. Cambridge: Cambridge University, 1992Google Scholar
  57. 57.
    Verlinde E., Verlinde H.: Chiral bosonization, determinants, and the string partition function. Nucl. Phys. B 288, 357 (1987)ADSCrossRefMathSciNetGoogle Scholar
  58. 58.
    Tian, G.: Canonical metrics in Kähler geometry. Notes taken by Meike Akveld. Lectures in Mathematics ETH Zürich. Basel: Birkhäuser Verlag, 2000Google Scholar
  59. 59.
    Wentworth, R.A.: Precise constants in bosonization formulas on Riemann surfaces II. arXiv:1008.2914
  60. 60.
    Yau S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)CrossRefzbMATHGoogle Scholar
  61. 61.
    Zabrodin A.: Matrix models and growth processes: from viscous flows to the quantum Hall effect. NATO Sci. Ser. II Math. 221, 261–318 (2006)CrossRefMathSciNetGoogle Scholar
  62. 62.
    Zeitouni, O., Zelditch, S.: Large deviations of empirical measures of zeros of random polynomials. Int. Math. Res. Not. 20, 3935–3992 (2010)Google Scholar
  63. 63.
    Zelditch S.: Large deviations of empirical measures of zeros on Riemann surfaces. Int. Math. Res. Not. 2013, 592–664 (2013)MathSciNetGoogle Scholar
  64. 64.
    Zelditch S.: Book review of “Holomorphic Morse inequalities and Bergman kernels Journal” (by Xiaonan Ma and George Marinescu). Bull. Am. Math. Soc. 46, 349–361 (2009)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Mathematical SciencesChalmers University of Technology and University of GothenburgGöteborgSweden

Personalised recommendations